2022-2023學年上海市青浦一中高一數(shù)學第二學期期末達標檢測試題含解析_第1頁
2022-2023學年上海市青浦一中高一數(shù)學第二學期期末達標檢測試題含解析_第2頁
2022-2023學年上海市青浦一中高一數(shù)學第二學期期末達標檢測試題含解析_第3頁
2022-2023學年上海市青浦一中高一數(shù)學第二學期期末達標檢測試題含解析_第4頁
2022-2023學年上海市青浦一中高一數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.數(shù)列{an}的通項公式是an=(n+2),那么在此數(shù)列中()A.a(chǎn)7=a8最大 B.a(chǎn)8=a9最大C.有唯一項a8最大 D.有唯一項a7最大2.已知=(2,3),=(3,t),=1,則=A.-3 B.-2C.2 D.33.垂直于同一條直線的兩條直線一定()A.平行 B.相交 C.異面 D.以上都有可能4.設(shè)的內(nèi)角所對邊的長分別為,若,則角=()A. B.C. D.5.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標,則點落在圓內(nèi)的概率為A. B. C. D.6.已知向量,,則,的夾角為()A. B. C. D.7.若,,與的夾角為,則的值是()A. B. C. D.8.角的終邊經(jīng)過點,那么的值為()A. B. C. D.9.若直線與圓相切,則()A. B. C. D.或10.已知點,則向量在方向上的投影為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)是等差數(shù)列的前項和,若,則________12.已知1,,,,4成等比數(shù)列,則______.13.已知實數(shù),是與的等比中項,則的最小值是______.14.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.15.給出以下四個結(jié)論:①平行于同一直線的兩條直線互相平行;②垂直于同一平面的兩個平面互相平行;③若,是兩個平面;,是異面直線;且,,,,則;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心;其中錯誤結(jié)論的序號為__________.(要求填上所有錯誤結(jié)論的序號)16.已知平面向量,,滿足:,且,則的最小值為____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.等差數(shù)列的各項均為正數(shù),,的前項和為,為等比數(shù)列,,且.(1)求與;(2)求數(shù)列的前項和.18.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若將函數(shù)圖象上所有點的橫坐標縮短為原來的倍,縱坐標不變,然后再向右平移()個單位長度,所得函數(shù)的圖象關(guān)于軸對稱.求的最小值19.設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.記為等差數(shù)列的前項和,已知,.(Ⅰ)求的通項公式;(Ⅱ)求,并求的最小值.21.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=(a2+c2﹣b2).(1)求角B的大??;(2)若邊b=,求a+c的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】,所以,令,解得n≤7,即n≤7時遞增,n>7遞減,所以a1<a2<a3<…<a7=a8>a9>….所以a7=a8最大.本題選擇A選項.2、C【解析】

根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.【詳解】由,,得,則,.故選C.【點睛】本題考點為平面向量的數(shù)量積,側(cè)重基礎(chǔ)知識和基本技能,難度不大.3、D【解析】試題分析:根據(jù)在同一平面內(nèi)兩直線平行或相交,在空間內(nèi)兩直線平行、相交或異面判斷.解:分兩種情況:①在同一平面內(nèi),垂直于同一條直線的兩條直線平行;②在空間內(nèi)垂直于同一條直線的兩條直線可以平行、相交或異面.故選D考點:空間中直線與直線之間的位置關(guān)系.4、B【解析】

試題分析:,由正弦定理可得即;因為,所以,所以,而,所以,故選B.考點:1.正弦定理;2.余弦定理.5、B【解析】

由拋擲兩枚骰子得到點的坐標共有36種,再利用列舉法求得點落在圓內(nèi)所包含的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.【詳解】由題意知,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)作為點P的坐標,共有種結(jié)果,而滿足條件的事件是點P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式,可得,故選B.【點睛】本題主要考查的是古典概型及其概率計算公式.,屬于基礎(chǔ)題.解題時要準確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù),令古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6、A【解析】

由題意得,即可得,再結(jié)合即可得解.【詳解】由題意知,則.,則,的夾角為.故選:A.【點睛】本題考查了向量數(shù)量積的應(yīng)用,屬于基礎(chǔ)題.7、C【解析】

由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.8、C【解析】,故選C。9、D【解析】

本題首先可根據(jù)圓的方程確定圓心以及半徑,然后根據(jù)直線與圓相切即可列出算式并通過計算得出結(jié)果?!驹斀狻坑深}意可知,圓方程為,所以圓心坐標為,圓的半徑,因為直線與圓相切,所以圓心到直線距離等于半徑,即解得或,故選D。【點睛】本題考查根據(jù)直線與圓相切求參數(shù),考查根據(jù)圓的方程確定圓心與半徑,若直線與圓相切,則圓心到直線距離等于半徑,考查推理能力,是簡單題。10、A【解析】

,,向量在方向上的投影為,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】

由等差數(shù)列的前和公式,求得,再結(jié)合等差數(shù)列的性質(zhì),即可求解.【詳解】由題意,根據(jù)等差數(shù)列的前和公式,可得,解得,又由等差數(shù)列的性質(zhì),可得.故答案為:.【點睛】本題主要考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的前和公式的應(yīng)用,其中解答中熟記等差數(shù)列的性質(zhì),以及合理應(yīng)用等差數(shù)列的前和公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、2【解析】

因為1,,,,4成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì),可得,再利用,確定取值.【詳解】因為1,,,,4成等比數(shù)列,所以,所以或,又因為,所以.故答案為:2【點睛】本題主要考查等比數(shù)列的性質(zhì),還考查運算求解的能力,屬于基礎(chǔ)題.13、【解析】

通過是與的等比中項得到,利用均值不等式求得最小值.【詳解】實數(shù)是與的等比中項,,解得.則,當且僅當時,即時取等號.故答案為:.【點睛】本題考查了等比中項,均值不等式,1的代換是解題的關(guān)鍵.14、【解析】

利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【詳解】由扇形的弧長、半徑以及圓心角之間的關(guān)系可知,該扇形的圓心角大小為.故答案為:.【點睛】本題考查扇形圓心角的計算,解題時要熟悉扇形的弧長、半徑以及圓心角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.15、②【解析】

③①可由課本推論知正確;②可舉反例;④可進行證明.【詳解】命題①平行于同一直線的兩條直線互相平行,由課本推論知是正確的;②垂直于同一平面的兩個平面互相平行,是錯誤的,例如正方體的上底面,前面和右側(cè)面,是互相垂直的關(guān)系;③根據(jù)課本推論知結(jié)論正確;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心這一結(jié)論是正確的;作出B在底面的射影O,連結(jié)AO,DO,則,同理,,進而得到O為三角形的垂心.

故答案為②【點睛】這個題目考查了命題真假的判斷,一般這類題目可以通過課本的性質(zhì)或者結(jié)論進行判斷;也可以通過舉反例來解決這個問題.16、-1【解析】

,,,由經(jīng)過向量運算得,知點在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設(shè)是中點,則,∵,∴,即,,記,則點在以為圓心,1為半徑的圓上,記,,注意到,因此當與反向時,最小,∴.∴最小值為-1.故答案為-1.【點睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點軌跡(讓表示的有向線段的起點都是原點)是圓,然后分析出只有最小時,才可能最?。畯亩玫浇忸}方法.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】試題分析:(1)的公差為,的公比為,利用等比數(shù)列的通項公式和等差數(shù)列的前項和公式,由列出關(guān)于的方程組,解出的值,從而得到與的表達式.(2)根據(jù)數(shù)列的特點,可用錯位相減法求它的前項和,由(1)的結(jié)果知,兩邊同乘以2得由(1)(2)兩式兩邊分別相減,可轉(zhuǎn)化為等比數(shù)列的求和問題解決.試題解析:(1)設(shè)的公差為,的公比為,則為正整數(shù),,依題意有,即,解得或者(舍去),故.4分(2).6分,,兩式相減得8分,所以12分考點:1、等差數(shù)列和等比數(shù)列;2、錯位相減法求特數(shù)列的前項和.18、(1),,.(2).【解析】

(1)根據(jù)誘導(dǎo)公式,二倍角公式,輔助角公式把化為的形式,再根據(jù)復(fù)合函數(shù)單調(diào)性求解;(2)先根據(jù)變換關(guān)系得到函數(shù)解析式,所得函數(shù)的圖象關(guān)于軸對稱,則時,.【詳解】(1)當即時,函數(shù)單調(diào)遞減,所以函數(shù)的單調(diào)遞減區(qū)間為.(2)將函數(shù)圖象上所有點的橫坐標縮短為原來的倍,縱坐標不變,然后再向右平移()個單位長度,所得函數(shù)為,若圖象關(guān)于軸對稱,則,即,解得,又,則當時,有最小值.【點睛】本題主要考查三角函數(shù)的性質(zhì)和圖像的變換.關(guān)鍵在于化為的形式,三角函數(shù)的平移變換是易錯點.19、(1);(2)【解析】

(1)由,且,可得當也適合,;(2)∵20、(1),(2),最小值為?1.【解析】

(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質(zhì),可得Sn的最小值.【詳解】(I)設(shè)的公差為d,由題意得.由得d=2.所以的通項公式為.(II)由(I)得.所以當n=4時,取得最小值,最小值為?1.【點睛】本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項的和公式,考查了等差數(shù)列前n項和的最值問題;求等差數(shù)列前n項和的最值有兩種方法:①函數(shù)法,②鄰項變號法.21、(1)B=60°(2)【解析】

(1)由三角形的面積公式,余弦定理化簡已知等式可求tanB的值,結(jié)合B的范圍可求B的值.(2)由正弦定理,三角函數(shù)恒等變換的應(yīng)用可求a+csin(A),由題意可求范圍A∈(,),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求解.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論