建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析_第1頁
建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析_第2頁
建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析_第3頁
建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析_第4頁
建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析

摘要:

建筑的熱環(huán)境對人們的生產(chǎn)與生活有著極為重要的影響,因此對建筑熱過程的研究不斷加深。本論文以建筑的熱容量為研究對象,提出了一種基于神經(jīng)網(wǎng)絡(luò)的建筑有效熱容動(dòng)態(tài)預(yù)測模型。該模型可通過歷史數(shù)據(jù)以及外界影響因素,對建筑的有效熱容進(jìn)行實(shí)時(shí)預(yù)測,提高了熱環(huán)境的控制精度。在模型構(gòu)建的過程中,考慮了氣象、建筑結(jié)構(gòu)和空調(diào)系統(tǒng)等方面的因素,保證了模型的全面性和準(zhǔn)確性。

接著,本文通過收集典型的建筑熱過程數(shù)據(jù),對該模型進(jìn)行了應(yīng)用分析。分別以夏季制冷和冬季供暖兩大典型熱過程為例,對預(yù)測精度和實(shí)用性進(jìn)行了評估。實(shí)驗(yàn)結(jié)果表明,該模型在預(yù)測建筑有效熱容動(dòng)態(tài)變化過程中具有一定的優(yōu)勢,能夠較精確地反映出外界環(huán)境的變化對建筑熱容量的影響,同時(shí)在典型熱過程中也表現(xiàn)出良好的適用性。

關(guān)鍵詞:

建筑,有效熱容,動(dòng)態(tài)預(yù)測,神經(jīng)網(wǎng)絡(luò),典型熱過程

Abstract:

Thethermalenvironmentofbuildingshasasignificantimpactonpeople'sproductionanddailylife.Therefore,researchonbuildingthermalprocesseshasbeenconstantlydeepening.Thispapertakesthethermalcapacityofbuildingsastheresearchobjectandproposesadynamicpredictionmodelforeffectiveheatcapacityofbuildingsbasedonneuralnetworks.Themodelcanusehistoricaldataandexternalfactorstopredicttheeffectiveheatcapacityofbuildingsinreal-time,improvingtheaccuracyofthermalenvironmentcontrol.Intheprocessofmodelconstruction,factorssuchasmeteorology,buildingstructure,andairconditioningsystemsareconsidered,ensuringthecomprehensivenessandaccuracyofthemodel.

Next,thispaperconductedanapplicationanalysisofthemodelbycollectingtypicalbuildingthermalprocessdata.Summercoolingandwinterheating,thetwotypicalthermalprocesses,wereusedasexamplestoevaluatethepredictionaccuracyandpracticalityofthemodel.Theexperimentalresultsshowedthatthemodelhascertainadvantagesinpredictingthedynamicchangesofbuildingeffectivethermalcapacity,andcanaccuratelyreflecttheimpactofchangesintheexternalenvironmentonbuildingthermalcapacity.Atthesametime,italsoshowedgoodapplicabilityintypicalthermalprocesses.

Keywords:

Building,Effectiveheatcapacity,Dynamicprediction,Neuralnetworks,TypicalthermalprocessesTheaccuratepredictionofeffectivethermalcapacityiscrucialforcontrollingandoptimizingtheenergyconsumptionofbuildings.Inthisstudy,aneuralnetworkmodelwasdevelopedtodynamicallypredicttheeffectivethermalcapacityofbuildingsunderdifferentexternalconditions.Themodelwastrainedandtestedusingadatasetofreal-timebuildingenergyconsumptionandenvironmentaldata.

Theresultsshowedthattheneuralnetworkmodelwasabletoaccuratelypredictthechangesinbuildingeffectivethermalcapacityinresponsetoexternalvariations.Themodelexhibitedhighaccuracyandpracticalityincapturingthenonlinearanddynamicrelationshipbetweenthethermalcapacityandvariousexternalfactors,suchastemperature,humidity,solarradiation,andwindspeed.

Thepracticalapplicationofthismodelwastestedunderseveraltypicalthermalprocesses,suchasheating,cooling,andventilation.Theresultsdemonstratedthatthemodelwashighlyapplicableundervariousthermalconditionsandcouldbeusedtooptimizethebuilding'senergyefficiencyandreduceitscarbonfootprint.

Inconclusion,theneuralnetworkmodeldevelopedinthisstudyrepresentsasignificantadvancementintheaccurateandpracticalpredictionofbuildingeffectivethermalcapacity.ItcanbeusedtooptimizebuildingenergymanagementandplayacrucialroleinachievingsustainabledevelopmentgoalsOnepotentialapplicationofthisthermalcapacitypredictionmodelisinretrofittingexistingbuildingsforimprovedenergyefficiency.Byaccuratelypredictingabuilding'seffectivethermalcapacity,energyauditorsandbuildingmanagerscanidentifywhereimprovementscanbemadetoreduceenergywasteanddecreasegreenhousegasemissions.

Themodelcanalsobeusedinthedesignphaseofnewbuildingstooptimizeenergyperformanceandreduceoperationalcosts.Byunderstandinghowabuilding'sthermalcapacitywillchangeunderdifferentconditions,architectsandengineerscanmakeinformeddecisionsaboutmaterials,insulation,andHVACsystemstooptimizeenergyefficiencywhilemaintainingoccupantcomfort.

Furthermore,themodelcanbeusedtosupportrenewableenergysystemssuchassolarthermalandgeothermalenergy.Byaccuratelypredictingabuilding'sthermalcapacity,itispossibletodesignrenewableenergysystemsthatareappropriatelysizedandcaneffectivelymeetthebuilding'sheatingandcoolingneeds.Thiscanprovidesignificantcostsavingsandreducerelianceonfossilfuels.

Overall,thedevelopmentofthisneuralnetworkmodelrepresentsasignificantstepforwardinthefieldofbuildingenergymanagement.Itspracticalapplicationsinretrofittingexistingbuildings,designingnewbuildings,andsupportingrenewableenergysystemscanhaveasignificantimpactonreducingenergywaste,decreasinggreenhousegasemissions,andachievingsustainabledevelopmentgoalsInadditiontothespecificapplicationsdescribedabove,thedevelopmentofthisneuralnetworkmodelalsohasbroaderimplicationsforthefieldofartificialintelligenceanditsroleinsustainability.Theuseofinenergymanagementisagrowingareaofresearchanddevelopment,withpotentialapplicationsinfieldssuchastransportation,agriculture,andindustry.

However,aswithanytechnology,therearerisksandchallengesassociatedwiththeuseofinsustainability.Oneconcernisthepotentialforunintendedconsequences,suchasincreasedrelianceontechnologyleadingtofurtherenvironmentaldegradation.Additionally,theuseofmayrequiresignificantinfrastructureandresourcestobeputinplace,whichcouldbeabarrierforsomecommunitiesorregions.

Anotherimportantconsiderationistheethicalandsocialdimensionsofusinginsustainability.Forexample,theremaybeconcernsaboutprivacyanddataprotection,aswellasissuesrelatedtoequityandaccess.Itwillbeimportantforresearchersandpractitionersinthisfieldtoaddresstheseissuesandensurethatisusedinwaysthatareresponsible,equitable,andsustainable.

Inconclusion,thedevelopmentofaneuralnetworkmodelforbuildingenergymanagementrepresentsanimportantadvancementinthefieldofsustainability.Byoptimizingbuildingenergyuse,reducingwaste,andsupportingrenewableenergysystems,thistechnologyhasthepotentialtosignificantlyreducegreenhousegasemissionsandcontributetoachievingglobalsustainabilitygoals.However,aswithanytechnology,itisimportanttoconsiderthebroadersocial,ethical,and

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論