版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析建筑有效熱容動(dòng)態(tài)預(yù)測模型及其在典型熱過程中的應(yīng)用分析
摘要:
建筑的熱環(huán)境對人們的生產(chǎn)與生活有著極為重要的影響,因此對建筑熱過程的研究不斷加深。本論文以建筑的熱容量為研究對象,提出了一種基于神經(jīng)網(wǎng)絡(luò)的建筑有效熱容動(dòng)態(tài)預(yù)測模型。該模型可通過歷史數(shù)據(jù)以及外界影響因素,對建筑的有效熱容進(jìn)行實(shí)時(shí)預(yù)測,提高了熱環(huán)境的控制精度。在模型構(gòu)建的過程中,考慮了氣象、建筑結(jié)構(gòu)和空調(diào)系統(tǒng)等方面的因素,保證了模型的全面性和準(zhǔn)確性。
接著,本文通過收集典型的建筑熱過程數(shù)據(jù),對該模型進(jìn)行了應(yīng)用分析。分別以夏季制冷和冬季供暖兩大典型熱過程為例,對預(yù)測精度和實(shí)用性進(jìn)行了評估。實(shí)驗(yàn)結(jié)果表明,該模型在預(yù)測建筑有效熱容動(dòng)態(tài)變化過程中具有一定的優(yōu)勢,能夠較精確地反映出外界環(huán)境的變化對建筑熱容量的影響,同時(shí)在典型熱過程中也表現(xiàn)出良好的適用性。
關(guān)鍵詞:
建筑,有效熱容,動(dòng)態(tài)預(yù)測,神經(jīng)網(wǎng)絡(luò),典型熱過程
Abstract:
Thethermalenvironmentofbuildingshasasignificantimpactonpeople'sproductionanddailylife.Therefore,researchonbuildingthermalprocesseshasbeenconstantlydeepening.Thispapertakesthethermalcapacityofbuildingsastheresearchobjectandproposesadynamicpredictionmodelforeffectiveheatcapacityofbuildingsbasedonneuralnetworks.Themodelcanusehistoricaldataandexternalfactorstopredicttheeffectiveheatcapacityofbuildingsinreal-time,improvingtheaccuracyofthermalenvironmentcontrol.Intheprocessofmodelconstruction,factorssuchasmeteorology,buildingstructure,andairconditioningsystemsareconsidered,ensuringthecomprehensivenessandaccuracyofthemodel.
Next,thispaperconductedanapplicationanalysisofthemodelbycollectingtypicalbuildingthermalprocessdata.Summercoolingandwinterheating,thetwotypicalthermalprocesses,wereusedasexamplestoevaluatethepredictionaccuracyandpracticalityofthemodel.Theexperimentalresultsshowedthatthemodelhascertainadvantagesinpredictingthedynamicchangesofbuildingeffectivethermalcapacity,andcanaccuratelyreflecttheimpactofchangesintheexternalenvironmentonbuildingthermalcapacity.Atthesametime,italsoshowedgoodapplicabilityintypicalthermalprocesses.
Keywords:
Building,Effectiveheatcapacity,Dynamicprediction,Neuralnetworks,TypicalthermalprocessesTheaccuratepredictionofeffectivethermalcapacityiscrucialforcontrollingandoptimizingtheenergyconsumptionofbuildings.Inthisstudy,aneuralnetworkmodelwasdevelopedtodynamicallypredicttheeffectivethermalcapacityofbuildingsunderdifferentexternalconditions.Themodelwastrainedandtestedusingadatasetofreal-timebuildingenergyconsumptionandenvironmentaldata.
Theresultsshowedthattheneuralnetworkmodelwasabletoaccuratelypredictthechangesinbuildingeffectivethermalcapacityinresponsetoexternalvariations.Themodelexhibitedhighaccuracyandpracticalityincapturingthenonlinearanddynamicrelationshipbetweenthethermalcapacityandvariousexternalfactors,suchastemperature,humidity,solarradiation,andwindspeed.
Thepracticalapplicationofthismodelwastestedunderseveraltypicalthermalprocesses,suchasheating,cooling,andventilation.Theresultsdemonstratedthatthemodelwashighlyapplicableundervariousthermalconditionsandcouldbeusedtooptimizethebuilding'senergyefficiencyandreduceitscarbonfootprint.
Inconclusion,theneuralnetworkmodeldevelopedinthisstudyrepresentsasignificantadvancementintheaccurateandpracticalpredictionofbuildingeffectivethermalcapacity.ItcanbeusedtooptimizebuildingenergymanagementandplayacrucialroleinachievingsustainabledevelopmentgoalsOnepotentialapplicationofthisthermalcapacitypredictionmodelisinretrofittingexistingbuildingsforimprovedenergyefficiency.Byaccuratelypredictingabuilding'seffectivethermalcapacity,energyauditorsandbuildingmanagerscanidentifywhereimprovementscanbemadetoreduceenergywasteanddecreasegreenhousegasemissions.
Themodelcanalsobeusedinthedesignphaseofnewbuildingstooptimizeenergyperformanceandreduceoperationalcosts.Byunderstandinghowabuilding'sthermalcapacitywillchangeunderdifferentconditions,architectsandengineerscanmakeinformeddecisionsaboutmaterials,insulation,andHVACsystemstooptimizeenergyefficiencywhilemaintainingoccupantcomfort.
Furthermore,themodelcanbeusedtosupportrenewableenergysystemssuchassolarthermalandgeothermalenergy.Byaccuratelypredictingabuilding'sthermalcapacity,itispossibletodesignrenewableenergysystemsthatareappropriatelysizedandcaneffectivelymeetthebuilding'sheatingandcoolingneeds.Thiscanprovidesignificantcostsavingsandreducerelianceonfossilfuels.
Overall,thedevelopmentofthisneuralnetworkmodelrepresentsasignificantstepforwardinthefieldofbuildingenergymanagement.Itspracticalapplicationsinretrofittingexistingbuildings,designingnewbuildings,andsupportingrenewableenergysystemscanhaveasignificantimpactonreducingenergywaste,decreasinggreenhousegasemissions,andachievingsustainabledevelopmentgoalsInadditiontothespecificapplicationsdescribedabove,thedevelopmentofthisneuralnetworkmodelalsohasbroaderimplicationsforthefieldofartificialintelligenceanditsroleinsustainability.Theuseofinenergymanagementisagrowingareaofresearchanddevelopment,withpotentialapplicationsinfieldssuchastransportation,agriculture,andindustry.
However,aswithanytechnology,therearerisksandchallengesassociatedwiththeuseofinsustainability.Oneconcernisthepotentialforunintendedconsequences,suchasincreasedrelianceontechnologyleadingtofurtherenvironmentaldegradation.Additionally,theuseofmayrequiresignificantinfrastructureandresourcestobeputinplace,whichcouldbeabarrierforsomecommunitiesorregions.
Anotherimportantconsiderationistheethicalandsocialdimensionsofusinginsustainability.Forexample,theremaybeconcernsaboutprivacyanddataprotection,aswellasissuesrelatedtoequityandaccess.Itwillbeimportantforresearchersandpractitionersinthisfieldtoaddresstheseissuesandensurethatisusedinwaysthatareresponsible,equitable,andsustainable.
Inconclusion,thedevelopmentofaneuralnetworkmodelforbuildingenergymanagementrepresentsanimportantadvancementinthefieldofsustainability.Byoptimizingbuildingenergyuse,reducingwaste,andsupportingrenewableenergysystems,thistechnologyhasthepotentialtosignificantlyreducegreenhousegasemissionsandcontributetoachievingglobalsustainabilitygoals.However,aswithanytechnology,itisimportanttoconsiderthebroadersocial,ethical,and
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年會(huì)部門經(jīng)理發(fā)言稿
- 測繪服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 達(dá)英-35對未育女性人工流產(chǎn)術(shù)后子宮內(nèi)膜的影響
- 工作標(biāo)兵先進(jìn)事跡材料(10篇)
- 初級會(huì)計(jì)實(shí)務(wù)-初級會(huì)計(jì)《初級會(huì)計(jì)實(shí)務(wù)》模擬試卷681
- 初級會(huì)計(jì)實(shí)務(wù)-《初級會(huì)計(jì)實(shí)務(wù)》??荚嚲?47
- 城市復(fù)雜環(huán)境低成本北斗-GNSS高精度單車定位技術(shù)研究
- 2024年中國熱處理行業(yè)深度分析、投資前景、趨勢預(yù)測報(bào)告(智研咨詢)
- 補(bǔ)陽還五湯聯(lián)合杵針治療腰椎術(shù)后殘留神經(jīng)根癥狀的臨床療效觀察
- 二零二五年度廢棄包裝物處理及資源化利用合同3篇
- 醫(yī)院消防安全培訓(xùn)課件
- 《00541語言學(xué)概論》自考復(fù)習(xí)題庫(含答案)
- 2025年機(jī)關(guān)工會(huì)個(gè)人工作計(jì)劃
- 江蘇省南京市、鹽城市2023-2024學(xué)年高三上學(xué)期期末調(diào)研測試+英語+ 含答案
- 2024護(hù)理不良事件分析
- 光伏項(xiàng)目的投資估算設(shè)計(jì)概算以及財(cái)務(wù)評價(jià)介紹
- 電力安全工作規(guī)程(完整版)
- 2024年湖南省公務(wù)員錄用考試《行測》試題及答案解析
- 借名買車的協(xié)議書范文范本
- 中國古代文學(xué)史 馬工程課件(下)21第九編晚清文學(xué) 緒論
- 2023年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招(語文)試題庫含答案解析
評論
0/150
提交評論