版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
CFA二級知識框架FrameworkofCFA tativeCorrelationandMultipleRegressionandIssuesIn Time-Time-Time- ysis,DecisionTrees,Reading H0:ρ=0;t-
Reject Reject
t= n-2,df=n-
-t
+
計
SimpleLinear建ANOVA建ANOVATable分檢驗?zāi)nA(yù)
Yib0b1Xii,i1,..., inedvariable,predicted natoryvariable,predicting★①②③④⑤⑥AlinearrelationshipexistsbetweenXandXisuncorrelatedwiththeerrorTheexpectedvalueoftheerrortermiszero(i.e.,E(εi)=0ThevarianceoftheerrortermisconstantTheerrortermisuncorrelatedacrossobservations(E(εiεj)=0forTheerrortermisnormallyAnestimatedslopecoefficientof2:Ywillchangetwounitsforevery1unitchangeinCoefficient估Intercepttermof2%:theXiszero,Yis★bCov(X,YbYb計 Var(X n-k-MSE=SSE/(n-k-n--計算 R2SSR1 R2 (多元都成立R2(一元解釋:R2of0.90indicatesthatthevariationoftheindependentvariableins90%ofvariationinthedependent計算 SEE nk性質(zhì)TheSEEgaugesthe“fit”oftheregressionline.Thesmallerthestandarderror,thebettertheTheSEEisthestandarddeviationoftheerrortermsinthe考試時考試時給定條t-p-0s?b?1s1?分?t t:查 c AsSEErises,sb?also1t? sDecisionrule:rejectH0if+tcritical<t,ort<-tRejectionofthenullmeansthattheslopecoefficientisdifferentfrom?? Y?tcsf 了WhenWhenpredictingYusinglinearregressionmodel,weencountertwotypesofUncertaintyintheregressionmodelitself,asreflectedinthestandarderrorofUncertaintyabouttheestimatesoftheregressionmodel’sReadingMULTIPLEREGRESSIONANDISSUESIN MultipleRegression&SimpleLinear
要EachslopecoefficientistheestimatedchangeinYforaoneunitchangeinXi,holdingtheb?bs單個檢 t sSignificance
df=n-k-聯(lián)合檢驗(F-test):Thetestassessestheeffectivenessofthemodelasawholeinex dependentvariableH0:b1=b2=b3=…= MSR SSR Ha:atleastonebj≠0(j=1torejectH0:ifF(test-statistic)>Fc(criticalTheF-testhereisalwaysaone-tailed
FMSE
SSE(nk1)yststypicallydonotuseANOVAandF-testsinsimplelinearregressionbecausethestatisticisthesquareofthet-statisticfortheslopeMultipleRegression&SimpleLinearRegression要解釋:R2of0.90indicatesthatthemodelasawholeins90%ofthevariationin缺點:R2almostalwaysincreasesasvariablesareaddedtothemodel,evenifthecontributionofthenewvariablesisnotstatisticallyn1 (計算)AdjustedR2:adjustedR2 nk SSTnR2R2YMultipleMultipleRegressionAssumptionUnconditional:nomajorConditional:significantNotaffecttheconsistencyofparameterCoefficientestimatesarenotStandarderrorsareusuallyunreliabletoosmall—>TypeIBreuschnχ2H0:NoBP=n×Rresidual2,df=k,one-tailedgeneralizedleastRejectH0,positiveRejectH0,positiveserialnotrejectRejectH0,negativeserialSerialCorrelationSerialcorrelationisoftenfoundintimeseriesNotaffecttheconsistencyofestimatedregressioncoefficientsandcoefficientPositiveserialcorrelationismuchmorecommon:Positiveserialcorrelation→standarderrorsthataretoosmall→TypeIerror&F-testDurbin-Watsontest(看下圖H0Noserialcorrelation,DW 4- 4- adjustingthecoefficientstandarderrors(e.g.,Hansenmethod):theHansenmethodalsoincorporatethetime-seriesThesituationthattwoormoreindependentvariablesarehighly(butperfectly)correlatedwitheachNotaffecttheconsistencyofregressioncoefficient eextremelyimpreciseandImpossibletodistinguishtheindividualimpactsoftheindependent①t-testsindicatethatnoneoftheindividualcoefficientsissignificantlydifferentthanzero,whiletheF-testindicatesoverallsignificanceandtheR2ishigh②︱rX1X2︱Removeoneormoreindependent模Qualitativevariable:0andncategories→n?1dummy例:EPStb0b1Q1tb2Q2tb3Q3tEPSt=aquarterlyobservationofearningsperQ1t=1ifperiodtisthefirstquarter,Q1t=0Q2t=1ifperiodtisthesecondquarter,Q2t=0Q3t=1ifperiodtisthethirdquarter,Q3t=0b0:averagevalueofEPSfor Slopecoefficient:differenceinEPS(onaverage)betweentherespective(i.e.,quarter1,2,or3)andtheomitted比如,b1EPS1①ThefunctionalformcanbeImportantvariablesareVariablesshouldbeDataisimproperly②TimeseriesAlaggedYisusedasanXwithseriallycorrelatedAfunctionoftheYisusedasanX(forecastingtheIndependentvariablesaremeasuredwith③Time-seriesdata:ModelReadingTIME- Log-linearLog-lineartrendmodel:Ln(yt)Ifthedataplotswithanon-linear(curved)shape,thentheresidualsfromatrendmodelwillbepersistentlypositiveornegativeforaperiodof每期的增長率是constantTrendLineartrend:Thedatapointsappeartobeequallydistributedaboveandbelowtheregression每期增長量是constant使用trend
以AR(1)開始模型的估ARARPxtb0b1xt1b2xt2...bpxtpARChainruleof xt1b0b1 計Assumption具體看后面NoNoConditionalCovariance-stationary檢驗是否有Seasonality(具體看后面)+(CompareforecastingsmallestRMSEforout-of-sample→最 RMSE計ARARModel考試時給的表1、Noautocorrelation:針對考試時給的表H: No t tstatistics t standarderror1/ RejectH0:t>+tcritical,ort<-tRejectH0:(addlaggedvalues)AR(1)→H: H: No tRejectH0:t>+tcritical,ort<-t2、NoConditionalHeteroskedasticity:針對residualterm(用含HeteroskedasticityreferstothesituationthatthevarianceoftheerrortermisnotTestConditionalHeteroskedasticity=Testwhetheratimeseriesis2aa 1t a1issignificantlydifferentfrom0→ConditionalHeteroskedasticityGeneralizedleastCovariance- Constantandfiniteexpectedvalueofthetime ConstantandfinitevarianceofthetimeCovariance- Constantandfiniteexpectedvalueofthetime Constantandfinitevarianceofthetime ConstantandfinitecovariancewithleadingorlaggedMeanMean-reverting:11xt>mean—>xt+1<xxt<mean—>xt+1>x含含相SimpleSimplerandomwalk:xt=xt-Randomwalkwithadrift:xt=b0+b1xt-1+εtunitRandomxtxt=b0+b1xt-1+εt→xt-xt-1=b0+gxt-1+εt(g=b1H0:g=0(hasaunitrootandisnonstationary);Ha:RejectH0→thetimeseriesdoesnothaveaunitrootandis檢Defineytasyt=xt-xt-1→AR(1)modelyt=b0+b1yt-1First修Ytb0 RegressionwithMoreThanOneTimeNoneofthetimeserieshasaunit?Atleastonetimeserieshasaunitrootwhileatleastonetimeseriesdoes?Eachtimeserieshasaunitroot:whetherthetimeseriesarecointegrated??no?IfIfwecannotrejectthenull,wecannotusemultipleIfwecanrejectthenull,wecanusemultipleHa:H0:noTestthecointegration:Dickey-FullerEngle-Grangertest(DF-EGReading YSIS,DECISIONTREE,ANDSelective&full TypeofCorrelationacross
ysis:Selective Decisiontreesandsimulations:full Decisiontrees:amanageablesetof Simul
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《游泳服務(wù)與管理》課件
- 《電力企業(yè)流程管理》課件
- 《電磁輻射及預(yù)防》課件
- 2024年高考生物一輪復(fù)習(xí)必修二第五單元遺傳的基本規(guī)律試題
- 單位管理制度集合大合集【人力資源管理】十篇
- 單位管理制度集粹匯編職員管理篇十篇
- 單位管理制度分享匯編【員工管理】十篇
- 單位管理制度分享大全【人員管理】十篇
- 單位管理制度呈現(xiàn)合集【員工管理】十篇
- 《團隊建設(shè)與發(fā)展》課件
- 2023年機械員之機械員專業(yè)管理實務(wù)題庫及參考答案(a卷)
- 《論語》中的人生智慧與自我管理學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年金融理財-金融理財師(AFP)考試近5年真題附答案
- 2022版義務(wù)教育物理課程標(biāo)準(zhǔn)
- 數(shù)字資產(chǎn)管理與優(yōu)化考核試卷
- 期末測試-2024-2025學(xué)年語文四年級上冊統(tǒng)編版
- 教案-“枚舉法”信息技術(shù)(信息科技)
- 2024年內(nèi)部審計年度工作計劃范文(六篇)
- 四川省成都市2021-2022學(xué)年物理高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 光伏發(fā)電系統(tǒng)租賃合同范本
- 新教科版六年級上冊科學(xué)全冊知識點(期末總復(fù)習(xí)資料)
評論
0/150
提交評論