2023屆江蘇省鹽城市景山中學(xué)數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第1頁
2023屆江蘇省鹽城市景山中學(xué)數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第2頁
2023屆江蘇省鹽城市景山中學(xué)數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第3頁
2023屆江蘇省鹽城市景山中學(xué)數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第4頁
2023屆江蘇省鹽城市景山中學(xué)數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下圖所示的幾何體是由一個圓柱中挖去一個以圓柱的上底面為底面,下底面圓心為質(zhì)點的圓錐面得到,現(xiàn)用一個垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)2.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.243.?dāng)?shù)列滿足,則數(shù)列的前項和等于()A. B. C. D.4.圓錐的母線長為,側(cè)面展開圖為一個半圓,則該圓錐表面積為()A. B. C. D.5.在中,已知,且滿足,則的面積為()A.1 B.2 C. D.6.在區(qū)間上隨機(jī)地取一個數(shù),則事件“”發(fā)生的概率為()A. B. C. D.7.若正數(shù)x,y滿足x+3y=5xy,則3x+4y的最小值是()A. B. C.5 D.68.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.9.設(shè)集合,,若,則的取值范圍是()A. B. C. D.10.已知tan(α+π5A.1B.-57C.二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,,當(dāng)時,.則數(shù)列的前項和是_____.12.已知圓及點,若滿足:存在圓C上的兩點P和Q,使得,則實數(shù)m的取值范圍是________.13.已知數(shù)列為等比數(shù)列,,,則數(shù)列的公比為__________.14.已知,為銳角,且,則__________.15.若直線上存在點可作圓的兩條切線,切點為,且,則實數(shù)的取值范圍為.16.函數(shù)的圖象過定點______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在△ABC中,AB=8,AC=3,∠BAC=60°,以點A為圓心,r=2為半徑作一個圓,設(shè)PQ為圓A的一條直徑.(1)請用表示,用表示;(2)記∠BAP=θ,求的最大值.18.求過三點的圓的方程,并求這個圓的半徑和圓心坐標(biāo).19.已知{an}是等差數(shù)列,設(shè)數(shù)列{bn}的前n項和為Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通項公式;(2)令cn=anbn(n∈N*),求{cn}的前n項和Tn20.如圖,已知三棱柱的側(cè)棱垂直于底面,,,點,分別為和的中點.(1)若,求三棱柱的體積;(2)證明:平面;(3)請問當(dāng)為何值時,平面,試證明你的結(jié)論.21.某廠每年生產(chǎn)某種產(chǎn)品萬件,其成本包含固定成本和浮動成本兩部分.已知每年固定成本為20萬元,浮動成本,.若每萬件該產(chǎn)品銷售價格為40萬元,且每年該產(chǎn)品產(chǎn)銷平衡.(1)設(shè)年利潤為(萬元),試求與的關(guān)系式;(2)年產(chǎn)量為多少萬件時,該廠所獲利潤最大?并求出最大利潤.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)圓錐曲線的定義和圓錐的幾何特征,分截面過旋轉(zhuǎn)軸時和截面不過旋轉(zhuǎn)軸時兩種情況,分析截面圖形的形狀,最后綜合討論結(jié)果,可得答案.【詳解】根據(jù)題意,當(dāng)截面過旋轉(zhuǎn)軸時,圓錐的軸截面為等腰三角形,此時(1)符合條件;當(dāng)截面不過旋轉(zhuǎn)軸時,圓錐的軸截面為雙曲線的一支,此時(4)符合條件;故截面圖形可能是(1)(4);故選:D.【點睛】本題考查的知識點是旋轉(zhuǎn)體,圓錐曲線的定義,關(guān)鍵是掌握圓柱與圓錐的幾何特征.2、D【解析】設(shè)放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D3、A【解析】

當(dāng)為正奇數(shù)時,可推出,當(dāng)為正偶數(shù)時,可推出,將該數(shù)列的前項和表示為,結(jié)合前面的規(guī)律可計算出數(shù)列的前項和.【詳解】當(dāng)為正奇數(shù)時,由題意可得,,兩式相減得;當(dāng)為正偶數(shù)時,由題意可得,,兩式相加得.因此,數(shù)列的前項和為.故選:A.【點睛】本題考查數(shù)列求和,找出數(shù)列的規(guī)律是解題的關(guān)鍵,考查推理能力,屬于中等題.4、B【解析】

由圓錐展開圖為半徑為的半圓,得出其弧長等于圓錐的底面圓周長,可得出圓錐底面圓的半徑,然后利用圓錐的表面積公式可計算出圓錐的表面積.【詳解】一個圓錐的母線長為,它的側(cè)面展開圖為半圓,半圓的弧長為,即圓錐的底面周長為,設(shè)圓錐的底面半徑是,則得到,解得,這個圓錐的底面半徑是,圓錐的表面積為.故選:B.【點睛】本題考查圓錐表面積的計算,計算時要結(jié)合已知條件列等式計算出圓錐的相關(guān)幾何量,考查運(yùn)算求解能力,屬于中等題.5、D【解析】

根據(jù)正弦定理先進(jìn)行化簡,然后根據(jù)余弦定理求出C的大小,結(jié)合三角形的面積公式進(jìn)行計算即可.【詳解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面積.故選D.【點睛】本題主要考查三角形面積的計算,結(jié)合正弦定理余弦定理進(jìn)行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】由得,,所以,由幾何概型概率的計算公式得,,故選.考點:1.幾何概型;2.對數(shù)函數(shù)的性質(zhì).7、C【解析】

由已知可得,則,所以的最小值,應(yīng)選答案C.8、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.9、A【解析】因為,,且,即,所以.故選A.10、D【解析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先利用累加法求出數(shù)列的通項公式,然后將數(shù)列的通項裂開,利用裂項求和法求出數(shù)列的前項和.【詳解】當(dāng)時,.所以,,,,,.上述等式全部相加得,.,因此,數(shù)列的前項和為,故答案為:.【點睛】本題考查累加法求數(shù)列通項和裂項法求和,解題時要注意累加法求通項和裂項法求和對數(shù)列遞推公式和通項公式的要求,考查運(yùn)算求解能力,屬于中等題.12、【解析】

設(shè)出點P、Q的坐標(biāo),利用平面向量的坐標(biāo)運(yùn)算以及兩圓相交的條件求出實數(shù)m的取值范圍.【詳解】設(shè)點,由得,由點在圓上,得,又在圓上,,與有交點,則,解得故實數(shù)m的取值范圍為.故答案為:【點睛】本題考查了向量的坐標(biāo)運(yùn)算、利用圓與圓的位置關(guān)系求參數(shù)的取值范圍,屬于中檔題.13、【解析】

設(shè)等比數(shù)列的公比為,由可求出的值.【詳解】設(shè)等比數(shù)列的公比為,則,,因此,數(shù)列的公比為,故答案為:.【點睛】本題考查等比數(shù)列公比的計算,在等比數(shù)列的問題中,通常將數(shù)列中的項用首項和公比表示,建立方程組來求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】

由題意求得,再利用兩角和的正切公式求得的值,可得的值.【詳解】,為銳角,且,即,.再結(jié)合,則,故答案為.【點睛】本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.15、【解析】試題分析:若,則,直線上存在點可作和的兩條切線等價于直線與圓有公共點,由圓心到直線的距離公式可得,解之可得.考點:點到直線的距離公式及直線與圓的位置關(guān)系的運(yùn)用.【方法點晴】本題主要考查了點到直線的距離公式及直線與圓的位置關(guān)系的運(yùn)用,涉及到圓心到直線的距離公式和不等式的求解,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及學(xué)生的推理與運(yùn)算能力,本題的解答中直線上存在點可作和的兩條切線等價于直線與圓有公共點是解答的關(guān)鍵.16、【解析】

令真數(shù)為,求出的值,代入函數(shù)解析式可得出定點坐標(biāo).【詳解】令,得,當(dāng)時,.因此,函數(shù)的圖象過定點.故答案為:.【點睛】本題考查對數(shù)型函數(shù)圖象過定點問題,一般利用真數(shù)為來求得,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)22.【解析】

利用向量的三角形法則即可求得答案由,,可得,利用向量的數(shù)量積的坐標(biāo)表示的表達(dá)式,利用三角函數(shù)知識可求最值【詳解】(1)=-.(2)∵∠BAC=60°,設(shè)∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴當(dāng)sin(θ+φ)=1時,的最大值為22.【點睛】本題主要考查了三角函數(shù)與平面向量的綜合,而輔助角公式是解決三角函數(shù)的最值的常用方法,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應(yīng)用.18、(x﹣4)2+(y+3)2=21,圓的半徑為【解析】

設(shè)出圓的一般方程,把代入所設(shè),得到關(guān)于的方程組,求解,即可求得圓的一般方程,化為標(biāo)準(zhǔn)方程,進(jìn)一步求得圓心坐標(biāo)與半徑.【詳解】設(shè)圓的方程為:x2+y2+Dx+Ey+F=0,則,解得D=﹣4,E=3,F(xiàn)=0,∴圓的方程為x2+y2﹣8x+6y=0,化為(x﹣4)2+(y+3)2=21,可得:圓心是(4,﹣3)、半徑r=1.【點睛】本題主要考查圓的方程和性質(zhì),屬于簡單題.求圓的方程常見思路與方法有:①直接設(shè)出動點坐標(biāo),根據(jù)題意列出關(guān)于的方程即可;②根據(jù)幾何意義直接找到圓心坐標(biāo)和半徑,寫出方程;③待定系數(shù)法,可以根據(jù)題意設(shè)出圓的標(biāo)準(zhǔn)方程或一般式方程,再根據(jù)所給條件求出參數(shù)即可.19、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)?2n+2【解析】

(2)運(yùn)用數(shù)列的遞推式,以及等比數(shù)列的通項公式可得bn,{an}是公差為的等差數(shù)列,運(yùn)用等差數(shù)列的通項公式可得首項和公差,可得所求通項公式;

(2)求得,由數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式,即可得到所求和.【詳解】(2)2bn=b2(2+Sn),bn≠0,n=2時,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2時,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相減可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,設(shè){an}是公差為d的等差數(shù)列,a2b2=4,a7+b3=2即為a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n?2n﹣2,前n項和,,兩式相減可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化簡可得Tn=(n﹣2)2n+2.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運(yùn)用,考查數(shù)列的遞推式和數(shù)列的錯位相減法求和,化簡運(yùn)算能力,屬于中檔題.20、(1)4;(2)證明見解析;(3)時,平面,證明見解析.【解析】

(1)直接根據(jù)三棱柱體積計算公式求解即可;(2)利用中位線證明面面平行,再根據(jù)面面平行的性質(zhì)定理證明平面;(3)首先設(shè)為,利用平面列出關(guān)于參數(shù)的方程求解即可.【詳解】(1)∵三棱柱的側(cè)棱垂直于底面,且,,,∴由三棱柱體積公式得:;(2)證明:取的中點,連接,,∵,分別為和的中點,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)連接,設(shè),則由題意知,,∵三棱柱的側(cè)棱垂直于底面,∴平面平面,∵,∴,又點是的中點,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,則時,平面.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論