高中數(shù)學(xué)第一章平面向量與二階方陣131線性變換性質(zhì)同步練習(xí)新人教A版42_第1頁
高中數(shù)學(xué)第一章平面向量與二階方陣131線性變換性質(zhì)同步練習(xí)新人教A版42_第2頁
高中數(shù)學(xué)第一章平面向量與二階方陣131線性變換性質(zhì)同步練習(xí)新人教A版42_第3頁
高中數(shù)學(xué)第一章平面向量與二階方陣131線性變換性質(zhì)同步練習(xí)新人教A版42_第4頁
高中數(shù)學(xué)第一章平面向量與二階方陣131線性變換性質(zhì)同步練習(xí)新人教A版42_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

矩陣變換的性質(zhì)同步練習(xí)一,選擇題1,矩陣20將曲線x2y24變換為( )01A.圓B.橢圓C.直線D.點(diǎn)2,以下說法錯(cuò)誤的選項(xiàng)是()A.零向量與任一非零向量平行零向量與單位向量的模不相等平行向量方向相同平行向量必然是共線向量3,矩陣10對(duì)基向量i1和j001的217變換結(jié)果可把向量8變成( )2272288B.22C.22D.22二,填空題1121M113,則4,已知矩陣0,向量向量M(2).5,一般地,對(duì)平面上隨意直線l,若l經(jīng)過點(diǎn)A,且平行于向量v0,那么l的向量方程為.6,已知矩陣M1000,則該矩陣把坐標(biāo)系中的圖形都變成.三,解答題7,試討論以下矩陣將所給圖形變成了什么圖形,并指出該變換是什么變換01)01方程為y2x2-1-2)3)

0010101

點(diǎn)A(2,5)點(diǎn)A(3,7)(4)10點(diǎn)A(2,7)01(5)10

點(diǎn)A(a,b)8,給定圖形,如圖,在變換下變成何樣的圖形,請(qǐng)畫出變換后的圖形,并指出這是什么變換-2-yC(0,1)

B(1,1)xOA(1,0)參照答案1,B2,C3,B-3-24,15,l:OXOAtv0(tR)6,一條在x軸上的直線,射線或線段7,(1)變換后的方程仍為直線,該變換是恒等變換(2)經(jīng)過變化后變成(-2,5),它們對(duì)于y軸對(duì)稱,該變換為對(duì)于y軸的反射變換.(3)A(3,7)經(jīng)過變化后變成(3,-7),它們對(duì)于x軸對(duì)稱,該變換是對(duì)于x軸的反射變換.(4)即A(2,7)經(jīng)過變化后變成(7,2),它們對(duì)于直線y=x成軸對(duì)稱,該變換為對(duì)于直線y=x的反射變換.(5)A(a,b)經(jīng)過變化后變成(-b,-a),該變換為對(duì)于直線y=-x的反射變換.8,變成一條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論