版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件2.已知向量,則與的夾角為()A. B. C. D.3.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點(diǎn).公司為了調(diào)查產(chǎn)品銷售情況,需從這600個銷售點(diǎn)中抽取一個容量為100的樣本.記這項(xiàng)調(diào)查為①;在丙地區(qū)有20個大型銷售點(diǎn),要從中抽取7個調(diào)查其銷售收入和售后服務(wù)等情況,記這項(xiàng)調(diào)查為②,則完成①,②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機(jī)抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機(jī)抽樣法,分層抽樣法4.一個圓柱的母線長為5,底面半徑為2,則圓柱的軸截面的面積是()A.10 B.20 C.30 D.405.設(shè),則下列不等式恒成立的是A. B.C. D.6.已知,且,則的最小值為()A.8 B.12 C.16 D.207.函數(shù)的圖像關(guān)于直線對稱,則的最小值為()A. B. C. D.18.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現(xiàn)有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為()A. B. C. D.9.設(shè),若不等式恒成立,則實(shí)數(shù)a的取值范圍是()A. B. C. D.10.在中,分別是角的對邊,,則角為()A. B. C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.直線與直線的交點(diǎn)為,則________.12.中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體的所有棱長和為_______.13.在中,已知,則下列四個不等式中,正確的不等式的序號為____________①②③④14.如圖是甲、乙兩人在10天中每天加工零件個數(shù)的莖葉圖,若這10天甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則______.15.水平放置的的斜二測直觀圖如圖所示,已知,,則邊上的中線的實(shí)際長度為______.16.定義為數(shù)列的均值,已知數(shù)列的均值,記數(shù)列的前項(xiàng)和是,若對于任意的正整數(shù)恒成立,則實(shí)數(shù)k的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在直三棱柱中,,,,點(diǎn)N為AB中點(diǎn),點(diǎn)M在邊AB上.(1)當(dāng)點(diǎn)M為AB中點(diǎn)時,求證:平面;(2)試確定點(diǎn)M的位置,使得平面.18.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.19.在中,角的對邊分別為,已知(1)求;(2)若為銳角三角形,且邊,求面積的取值范圍.20.如圖,在四棱錐中,平面平面,,且,.(Ⅰ)求證:;(Ⅱ)若為的中點(diǎn),求證:平面.21.設(shè)兩個非零向量與不共線,(1)若,,,求證:三點(diǎn)共線;(2)試確定實(shí)數(shù),使和同向.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【點(diǎn)睛】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.2、D【解析】
先求出的模長,然后由可求出答案.【詳解】由題意,,,所以與的夾角為.故選D.【點(diǎn)睛】本題考查了兩個向量的夾角的求法,考查了向量的模長的計算,屬于基礎(chǔ)題.3、B【解析】
此題為抽樣方法的選取問題.當(dāng)總體中個體較少時宜采用簡單隨機(jī)抽樣法;當(dāng)總體中的個體差異較大時,宜采用分層抽樣;當(dāng)總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項(xiàng)調(diào)查中,總體中的個體差異較大,應(yīng)采用分層抽樣法;第②項(xiàng)調(diào)查總體中個體較少,應(yīng)采用簡單隨機(jī)抽樣法.
故選B.【點(diǎn)睛】本題考查隨機(jī)抽樣知識,屬基本題型、基本概念的考查.4、B【解析】分析:要求圓柱的軸截面的面積,需先知道圓柱的軸截面是什么圖形,圓柱的軸截面是矩形,由題意知該矩形的長、寬分別為,根據(jù)矩形面積公式可得結(jié)果.詳解:因?yàn)閳A柱的軸截面是矩形,由題意知該矩形的長是母線長,寬為底面圓的直徑,所以軸截面的面積為,故選B.點(diǎn)睛:本題主要考查圓柱的性質(zhì)以及圓柱軸截面的面積,屬于簡單題.5、C【解析】
利用不等式的性質(zhì),合理推理,即可求解,得到答案.【詳解】因?yàn)?,所以,所以A項(xiàng)不正確;因?yàn)?,所以,,則,所以B不正確;因?yàn)?,則,所以,又因?yàn)?,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【點(diǎn)睛】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的性質(zhì),合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、C【解析】
由題意可得,則,展開后利用基本不等式,即可求出結(jié)果.【詳解】因?yàn)?,且,即為,則,當(dāng)且僅當(dāng),即取得等號,則的最小值為.故選:C.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,注意等號成立的條件,考查運(yùn)算能力,屬于中檔題.7、C【解析】
的對稱軸為,化簡得到得到答案.【詳解】對稱軸為:當(dāng)時,有最小值為故答案選C【點(diǎn)睛】本題考查了三角函數(shù)的對稱軸,將對稱軸表示出來是解題的關(guān)鍵,意在考查學(xué)生對于三角函數(shù)性質(zhì)的靈活運(yùn)用.8、C【解析】
有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作216個,由正方體的結(jié)構(gòu)及鋸木塊的方法,可知一面帶有紅漆的木塊是每個面的中間那16塊,共有6×16=96個,由此能求出從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率.【詳解】有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作216個,由正方體的結(jié)構(gòu)及鋸木塊的方法,可知一面帶有紅漆的木塊是每個面的中間那16塊,共有6×16=96個,∴從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率:p.故選C.【點(diǎn)睛】本題考查概率的求法,考查古典概型、正方體的結(jié)構(gòu)特征等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.對于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個數(shù)可數(shù),使得滿足條件的事件個數(shù)除以總的事件個數(shù)即可.9、D【解析】
由題意可得恒成立,討論,,運(yùn)用基本不等式,可得最值,進(jìn)而得到所求范圍.【詳解】恒成立,即為恒成立,當(dāng)時,可得的最小值,由,當(dāng)且僅當(dāng)取得最小值8,即有,則;當(dāng)時,可得的最大值,由,當(dāng)且僅當(dāng)取得最大值,即有,則,綜上可得.故選.【點(diǎn)睛】本題主要考查不等式恒成立問題的解法,注意運(yùn)用參數(shù)分離和分類討論思想,以及基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化思想、分類討論思想和運(yùn)算能力.10、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【詳解】在中,因?yàn)?,由正弦定理,可得,又由,且,所以或,故選D.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練利用正弦定理,求得的值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
(2,2)為直線和直線的交點(diǎn),即點(diǎn)(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進(jìn)而得a+b的值。【詳解】因?yàn)橹本€與直線的交點(diǎn)為,所以,,即,,故.【點(diǎn)睛】本題考查求直線方程中的參數(shù),屬于基礎(chǔ)題。12、【解析】
取半正多面體的截面正八邊形,設(shè)半正多面體的棱長為,過分別作于,于,可知,,可求出半正多面體的棱長及所有棱長和.【詳解】取半正多面體的截面正八邊形,由正方體的棱長為1,可知,易知,設(shè)半正多面體的棱長為,過分別作于,于,則,,解得,故該半正多面體的所有棱長和為.【點(diǎn)睛】本題考查了空間幾何體的結(jié)構(gòu),考查了空間想象能力與計算求解能力,屬于中檔題.13、②③【解析】
根據(jù),分當(dāng)和兩種情況分類討論,每一類中利用正、余弦函數(shù)的單調(diào)性判斷,特別注意,當(dāng)時,.【詳解】當(dāng)時,在上是增函數(shù),因?yàn)椋?,因?yàn)樵谏鲜菧p函數(shù),且,所以,當(dāng)時,且,因?yàn)樵谏鲜菧p函數(shù),所以,而,所以.故答案為:②③【點(diǎn)睛】本題主要考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性在三角形中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.14、44.5【解析】
由莖葉圖直接可以求出甲的中位數(shù)和乙的平均數(shù),求和即可.【詳解】由莖葉圖知,甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則.【點(diǎn)睛】本題主要考查利用莖葉圖求中位數(shù)和平均數(shù).15、【解析】
利用斜二測直觀圖的畫圖規(guī)則,可得為一個直角三角形,且,得,從而得到邊上的中線的實(shí)際長度為.【詳解】利用斜二測直觀圖的畫圖規(guī)則,平行于軸或在軸上的線段,長度保持不變;平行于軸或在軸上的線段,長度減半,利用逆向原則,所以為一個直角三角形,且,所以,所以邊上的中線的實(shí)際長度為.【點(diǎn)睛】本題考查斜二測畫法的規(guī)則,考查基本識圖、作圖能力.16、【解析】
因?yàn)?,從而求出,可得數(shù)列為等差數(shù)列,記數(shù)列為,從而將對任意的恒成立化為,,即可求得答案.【詳解】,,故,,則,對也成立,,則,數(shù)列為等差數(shù)列,記數(shù)列為.故對任意的恒成立,可化為:,;即,解得,,故答案為:.【點(diǎn)睛】本題考查了根據(jù)遞推公式求數(shù)列通項(xiàng)公式和數(shù)列的單調(diào)性,掌握判斷數(shù)列前項(xiàng)和最大值的方法是解題關(guān)鍵,考查了分析能力和計算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)推導(dǎo)出,由此能證明平面.(2)當(dāng)點(diǎn)是中點(diǎn)時,推導(dǎo)出,,從而平面,進(jìn)而,推導(dǎo)出△,從而,由此能證明平面.【詳解】(1)在直三棱柱中,點(diǎn)為中點(diǎn),為中點(diǎn),,平面,平面,平面.(2)當(dāng)點(diǎn)是中點(diǎn)時,使得平面.證明如下:在直三棱柱中,,,,點(diǎn)為中點(diǎn),點(diǎn)是中點(diǎn),,,,平面,平面,,,,,△,,,,,平面.【點(diǎn)睛】本題考查線面平行、線面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.18、(1)(2)【解析】
(1)通過降次公式和輔助角公式化簡函數(shù)得到,再根據(jù)周期公式得到答案.(2)根據(jù)(1)中函數(shù)表達(dá)式,直接利用單調(diào)區(qū)間公式得到答案.【詳解】(1)由題意得.可得:函數(shù)的最小正周期(2)由,得,所以函數(shù)的單調(diào)遞增區(qū)間為.【點(diǎn)睛】本題考查三角函數(shù)的最小正周期,函數(shù)的單調(diào)區(qū)間,將函數(shù)化簡為標(biāo)準(zhǔn)形式是解題的關(guān)鍵,意在考查學(xué)生對于三角函數(shù)性質(zhì)的應(yīng)用和計算能力.19、(1);(2)【解析】
(1)利用正弦定理邊化角,再利用和角的正弦公式化簡即得B的值;(2)先根據(jù)已知求出,再求面積的取值范圍.【詳解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若為銳角三角形,且,由余弦定理可得,由三角形為銳角三角形,可得且解得,可得面積【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的取值范圍的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.20、(Ⅰ)見解析;(Ⅱ)見解析【解析】
(Ⅰ)線線垂直先求線面垂直,即平面,進(jìn)而可得;(Ⅱ)連接D與PC的中點(diǎn)F,只需證明即可.【詳解】(Ⅰ)因?yàn)?,所以.因?yàn)槠矫嫫矫?,且平面平面,所以平面.因?yàn)槠矫?,所以.(Ⅱ)證明:取中點(diǎn),連接,.因?yàn)闉橹悬c(diǎn),所以,且.因?yàn)椋?,所以,且,所以四邊形為平行四邊形.所以.因?yàn)槠矫?,平面,所以平面.【點(diǎn)睛】此題考查立體幾何證明,線線垂直一般通過線面垂直證明,線面平行只需在面內(nèi)找到一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)集團(tuán)合作項(xiàng)目解除和解協(xié)議
- 2025年《辦公室裝修合同》
- 2025年度二零二五版媒體內(nèi)容授權(quán)使用合同4篇
- 合伙股份協(xié)議書(四人2025年版)3篇
- 二零二五年度2025版非全日制用工人員服務(wù)協(xié)議3篇
- 2025年國家文物古跡旅行協(xié)議
- 2025年健身社交俱樂部合同
- 2025年醫(yī)療健康互聯(lián)網(wǎng)技術(shù)合作協(xié)議
- 二零二五年咖啡廳租賃合同書(含咖啡廳年度營銷計劃)3篇
- 二零二五年度高端企業(yè)搬遷合同模板2篇
- 小學(xué)一年級20以內(nèi)加減法混合運(yùn)算3000題(已排版)
- 智慧工廠數(shù)字孿生解決方案
- 病機(jī)-基本病機(jī) 邪正盛衰講解
- 品管圈知識 課件
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務(wù)員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險防控PPT
- 充電樁采購安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
評論
0/150
提交評論