版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、平行四邊形真題與模擬題分類(lèi)匯編(難題易錯(cuò)題)1.如圖,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),求證:△PDH的周長(zhǎng)是定值;(3)當(dāng)BE+CF的長(zhǎng)取最小值時(shí),求AP的長(zhǎng).【答案】(1)證明見(jiàn)解析.(2)證明見(jiàn)解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識(shí)用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過(guò)B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長(zhǎng)是定值.(3)解:如圖3,過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.設(shè)AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.2.已知:在菱形ABCD中,E,F(xiàn)是BD上的兩點(diǎn),且AE∥CF.求證:四邊形AECF是菱形.【答案】見(jiàn)解析【解析】【分析】由菱形的性質(zhì)可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可證△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四邊形的判定和菱形的判定可得四邊形AECF是菱形.【詳解】證明:∵四邊形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四邊形AECF是平行四邊形又∵AF=CF,∴四邊形AECF是菱形【點(diǎn)睛】本題主要考查菱形的判定定理,首先要判定其為平行四邊形,這是菱形判定的基本判定.3.如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點(diǎn).已知AD=1,AB=2.(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;(2)當(dāng)∠B=70°時(shí),求∠AEC的度數(shù);(3)當(dāng)△ACE為直角三角形時(shí),求邊BC的長(zhǎng).【答案】(1);(2)∠AEC=105°;(3)邊BC的長(zhǎng)為2或.【解析】試題分析:(1)過(guò)A作AH⊥BC于H,得到四邊形ADCH為矩形.在△BAH中,由勾股定理即可得出結(jié)論.(2)取CD中點(diǎn)T,連接TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∠AET=∠B=70°.又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到結(jié)論.(3)分兩種情況討論:①當(dāng)∠AEC=90°時(shí),易知△CBE≌△CAE≌△CAD,得∠BCE=30°,解△ABH即可得到結(jié)論.②當(dāng)∠CAE=90°時(shí),易知△CDA∽△BCA,由相似三角形對(duì)應(yīng)邊成比例即可得到結(jié)論.試題解析:解:(1)過(guò)A作AH⊥BC于H.由∠D=∠BCD=90°,得四邊形ADCH為矩形.在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴,則(2)取CD中點(diǎn)T,聯(lián)結(jié)TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°.又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.(3)分兩種情況討論:①當(dāng)∠AEC=90°時(shí),易知△CBE≌△CAE≌△CAD,得∠BCE=30°,則在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.②當(dāng)∠CAE=90°時(shí),易知△CDA∽△BCA,又,則(舍負(fù))易知∠ACE<90°,所以邊BC的長(zhǎng)為.綜上所述:邊BC的長(zhǎng)為2或.點(diǎn)睛:本題是四邊形綜合題.考查了梯形中位線,相似三角形的判定與性質(zhì).解題的關(guān)鍵是掌握梯形中常見(jiàn)的輔助線作法.4.如圖,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊△ABD,點(diǎn)E是線段AB的中點(diǎn),連接CE并延長(zhǎng)交線段AD于點(diǎn)F.(1)求證:四邊形BCFD為平行四邊形;(2)若AB=6,求平行四邊形ADBC的面積.【答案】(1)見(jiàn)解析;(2)S平行四邊形ADBC=.【解析】【分析】(1)在Rt△ABC中,E為AB的中點(diǎn),則CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因?yàn)椤螧AD=∠ABC=60°,所以AD∥BC,即FD//BC,則四邊形BCFD是平行四邊形.(2)在Rt△ABC中,求出BC,AC即可解決問(wèn)題;【詳解】解:(1)證明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等邊△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E為AB的中點(diǎn),∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E為AB的中點(diǎn),∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四邊形BCFD是平行四邊形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=,∴S平行四邊形BCFD=3×=,S△ACF=×3×=,S平行四邊形ADBC=.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、直角三角形斜邊中線定理、等邊三角形的性質(zhì)、解直角三角形、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考??碱}型.5.(問(wèn)題情境)在△ABC中,AB=AC,點(diǎn)P為BC所在直線上的任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過(guò)點(diǎn)C作CF⊥AB,垂足為F.當(dāng)P在BC邊上時(shí)(如圖1),求證:PD+PE=CF.證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)(變式探究)(1)當(dāng)點(diǎn)P在CB延長(zhǎng)線上時(shí),其余條件不變(如圖3),試探索PD、PE、CF之間的數(shù)量關(guān)系并說(shuō)明理由;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:(結(jié)論運(yùn)用)(2)如圖4,將長(zhǎng)方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值.(遷移拓展)(3)在直角坐標(biāo)系中,直線l1:y=-x+8與直線l2:y=﹣2x+8相交于點(diǎn)A,直線l1、l2與x軸分別交于點(diǎn)B、點(diǎn)C.點(diǎn)P是直線l2上一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線l1的距離為2.求點(diǎn)P的坐標(biāo).【答案】【變式探究】證明見(jiàn)解析【結(jié)論運(yùn)用】8【遷移拓展】(﹣1,6),(1,10)【解析】【變式探究】連接AP,同理利用△ABP與△ACP面積之差等于△ABC的面積可以證得;【結(jié)論運(yùn)用】過(guò)點(diǎn)E作EQ⊥BC,垂足為Q,根據(jù)勾股定理和矩形的性質(zhì)解答即可;【遷移拓展】分兩種情況,利用結(jié)論,求得點(diǎn)P到x軸的距離,再利用待定系數(shù)法可求出P的坐標(biāo).【詳解】變式探究:連接AP,如圖3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴AB?CF=AC?PE﹣AB?PD.∵AB=AC,∴CF=PD﹣PE;結(jié)論運(yùn)用:過(guò)點(diǎn)E作EQ⊥BC,垂足為Q,如圖④,∵四邊形ABCD是長(zhǎng)方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折疊可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC==8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四邊形EQCD是長(zhǎng)方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由問(wèn)題情境中的結(jié)論可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值為8;遷移拓展:如圖,由題意得:A(0,8),B(6,0),C(﹣4,0)∴AB==10,BC=10.∴AB=BC,(1)由結(jié)論得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6即點(diǎn)P1的縱坐標(biāo)為6又點(diǎn)P1在直線l2上,∴y=2x+8=6,∴x=﹣1,即點(diǎn)P1的坐標(biāo)為(﹣1,6);(2)由結(jié)論得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10即點(diǎn)P1的縱坐標(biāo)為10又點(diǎn)P1在直線l2上,∴y=2x+8=10,∴x=1,即點(diǎn)P1的坐標(biāo)為(1,10)【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定及勾股定理等知識(shí)點(diǎn),利用面積法列出等式是解決問(wèn)題的關(guān)鍵.6.定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的14【答案】(1)見(jiàn)解析;(2)12;探究:2或23.【解析】試題分析:(1)利用一組對(duì)邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點(diǎn),則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD-2S△ABF即可求解.探究:畫(huà)出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90°,根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=12∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD-2S△ABF=4×6-2×12探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=12∵沿CD折疊A和A′重合,∴AD=A′D=12AB=1∵△A′CD與△ABC重合部分的面積等于△ABC面積的14∴S△DOC=14S△ABC=12S△BDC=12S△ADC=1∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過(guò)B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=12即C和M重合,∴∠ACB=90°,由勾股定理得:AC=42∴△ABC的面積是12×BC×AC=12×2×23=2②如圖2,∵S△ACD=S△BCD.∴AD=BD=12∵沿CD折疊A和A′重合,∴AD=A′D=12AB=1∵△A′CD與△ABC重合部分的面積等于△ABC面積的14∴S△DOC=14S△ABC=12S△BDC=12S△ADC=1∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過(guò)C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=12∴S△ABC=2S△ADC=2S△A′DC=2×12×A′D×CQ=2×1即△ABC的面積是2或23.考點(diǎn):四邊形綜合題.7.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為.(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見(jiàn)解析;(2)成立,證明見(jiàn)解析.【解析】試題分析:延長(zhǎng)EM交AD于點(diǎn)H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長(zhǎng)EM交AD于點(diǎn)H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45°,∠FCA=45°,根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說(shuō)明DM=ME.試題解析:如圖1,延長(zhǎng)EM交AD于點(diǎn)H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長(zhǎng)EM交AD于點(diǎn)H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如圖2,連接AE,∵四邊形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點(diǎn):(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).8.(問(wèn)題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說(shuō)明理由;(解決問(wèn)題)(3)如圖(3)在正方形ABCD中,AB=22,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫(xiě)出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見(jiàn)解析;(3)16+83或16﹣83【解析】【分析】(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為:AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+83或16﹣83.分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,如圖所示:過(guò)D'作D'E⊥AB,交BA的延長(zhǎng)線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=22=AD',∴D'E=12AD'=2,AE=6∴BE=22+6,∴Rt△BD'E中,BD'2=D'E2+BE2=(2)2+(22+6)2=16+8②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,如圖所示:過(guò)B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=22=AD',∴BF=12AB=2,AF=6,∴D'F=22﹣6,∴Rt△BD'F中,BD'2=BF2+D'F2=(2)2+(22-6)2=16﹣8綜上所述,BD′平方的長(zhǎng)度為16+83或16﹣83.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計(jì)算求解.解題時(shí)注意:有三個(gè)角是直角的四邊形是矩形.9.小明在矩形紙片上畫(huà)正三角形,他的做法是:①對(duì)折矩形紙片ABCD(AB>BC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處,再折出PB、PC,最后用筆畫(huà)出△PBC(圖1).(1)求證:圖1中的PBC是正三角形:(2)如圖2,小明在矩形紙片HIJK上又畫(huà)了一個(gè)正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請(qǐng)求出NJ的長(zhǎng);(3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長(zhǎng)為6cm,當(dāng)另一邊的長(zhǎng)度a變化時(shí),在矩形紙片上總能畫(huà)出最大的正三角形,但位置會(huì)有所不同.請(qǐng)根據(jù)小明的發(fā)現(xiàn),畫(huà)出不同情形的示意圖(作圖工具不限,能說(shuō)明問(wèn)題即可),并直接寫(xiě)出對(duì)應(yīng)的a的取值范圍.【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②12-6(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點(diǎn)Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,繼而可得∠NQJ=30°,設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進(jìn)行計(jì)算,畫(huà)出圖形即可.(1)證明:∵①對(duì)折矩形紙片ABCD(AB>BC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90°∵△MNJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點(diǎn)Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN知∠JIN=∠QNI=15°,∴∠NQJ=30°,設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=12-6,即NJ=12-6(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長(zhǎng)為b,則0<b≤6,則tan60°=,∴a=,∴0<b≤=;②如圖當(dāng)DF與DC重合時(shí),DF=DE=6,∴a=sin60°×DE==,當(dāng)DE與DA重合時(shí),a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30°∴DF=∴a>點(diǎn)睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度柑橘滯銷(xiāo)產(chǎn)品線上推廣與“搶購(gòu)”銷(xiāo)售合同3篇
- 2024瑜伽館瑜伽教練勞動(dòng)合同范本及教練休息時(shí)間規(guī)定3篇
- 2024版雞蛋簡(jiǎn)單購(gòu)銷(xiāo)合同
- 2025年度養(yǎng)老設(shè)施建設(shè)承包合同范本權(quán)威版4篇
- 2025年度智能交通信號(hào)控制系統(tǒng)研發(fā)與推廣合同4篇
- 2024知識(shí)產(chǎn)權(quán)許可使用合同許可人和被許可人
- 2025年度漁業(yè)生態(tài)循環(huán)承包經(jīng)營(yíng)合同4篇
- 2024版魚(yú)苗的購(gòu)銷(xiāo)合同范本
- 2025年度智慧能源管理系統(tǒng)承包合作協(xié)議范文4篇
- 2025年度醫(yī)院手術(shù)室設(shè)備供應(yīng)及承包運(yùn)營(yíng)協(xié)議4篇
- 立項(xiàng)報(bào)告蓋章要求
- 2022年睪丸腫瘤診斷治療指南
- 被執(zhí)行人給法院執(zhí)行局寫(xiě)申請(qǐng)范本
- 主變壓器試驗(yàn)報(bào)告模板
- 安全防護(hù)通道施工方案
- 視覺(jué)元素對(duì)心理感知的影響
- 飯店管理基礎(chǔ)知識(shí)(第三版)中職PPT完整全套教學(xué)課件
- 柴油供貨運(yùn)輸服務(wù)方案
- 110應(yīng)急聯(lián)動(dòng)預(yù)案
- 光伏發(fā)電監(jiān)理規(guī)劃
- 清洗劑msds清洗劑MSDS
評(píng)論
0/150
提交評(píng)論