版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湘教版九年級(jí)數(shù)學(xué)上冊(cè)單元測(cè)試題全套(含答案)第1章章末檢測(cè)(時(shí)間:90分鐘滿分:100分)一、選擇題(每小題4分,共40分)1.已知點(diǎn)A(x1,y1),B(x2,y2)是反比例函數(shù)y=﹣的圖象上的兩點(diǎn),若x1<0<x2,則下列結(jié)論正確的是()A.
y1<0<y2
B.
y2<0<y1
C.
y1<y2<0
D.
y2<y1<02.在同一直角坐標(biāo)系中,若直線y=k1x與雙曲線y=沒有公共點(diǎn),則(
)A.
k1k2<0
B.
k1k2>0
C.
k1+k2<0
D.
k1+k2>03.下列函數(shù)中,y既不是x的正比例函數(shù),也不是反比例函數(shù)的是()A.
y=
B.
C.
y=﹣3x2
D.
xy=﹣24.如圖,在平面直角坐標(biāo)系中,一條直線與反比例函數(shù)y=(x>0)的圖象交于兩點(diǎn)A、B,與x軸交于點(diǎn)C,且點(diǎn)B是AC的中點(diǎn),分別過兩點(diǎn)A、B作x軸的平行線,與反比例函數(shù)y=(x>0)的圖象交于兩點(diǎn)D、E,連接DE,則四邊形ABED的面積為(
)A.
4
B.
C.
5
D.
5.下列函數(shù)中,y是x的反比例函數(shù)的是()A.
y=x﹣1
B.
y=
C.
D.
y=6.對(duì)于函數(shù)y=﹣,下列說法錯(cuò)誤的是(
)A.
它的圖象分布在第二、四象限
B.
它的圖象與直線y=x無交點(diǎn)
C.
當(dāng)x>0時(shí),y的值隨x的增大而增大
D.
當(dāng)x<0時(shí),y的值隨x的增大而減小7.反比例函數(shù)y=的圖象,當(dāng)x>0時(shí),y隨x的增大而增大,則k的取值范圍是(
)A.
k<3
B.
k≤3
C.
k>3
D.
k≥38.若y=2xm﹣5為反比例函數(shù),則m=()A.
-4
B.
-5
C.
4
D.
59.反比例函數(shù)y=-的圖象位于(
)A.
第一、二象限
B.
第一、三象限
C.
第二、四象限
D.
第三、四象限10.若反比例函數(shù)的圖象經(jīng)過點(diǎn)(m,3m),其中m≠0,則此反比例函數(shù)圖象經(jīng)過()A.
第一、三象限
B.
第一、二象限
C.
第二、四象限
D.
第三、四象限二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(﹣2,1)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),則四邊形MAOB的面積為________.
12.如圖,A,B是反比例函數(shù)y=圖象上的兩點(diǎn),過點(diǎn)A作AC⊥y軸,垂足為C,AC交OB于點(diǎn)D.若D為OB的中點(diǎn),△AOD的面積為3,則k的值為________.13.已知蓄電池的電壓為定值,使用蓄電池時(shí),電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.如果以此蓄電池為電源的用電器的限制不能超過12A,那么用電器的可變電阻應(yīng)控制的范圍是________.
14.如圖,點(diǎn)A為反比例函數(shù)y=圖象上一點(diǎn),過點(diǎn)A作AB⊥x軸于點(diǎn)B,連接OA,△ABO的面積為4,則k=________.15.已知y與2x﹣1成反比例,且當(dāng)x=1時(shí),y=2,那么當(dāng)x=0時(shí),y=________.16.已知雙曲線y=經(jīng)過點(diǎn)(﹣1,2),那么k的值等于________.17.如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為6,則k的值為________.
18.若y=是反比例函數(shù),則m滿足的條件是________
.三、解答題(共5小題,共36分)19.(6分)水池中蓄水90m2,現(xiàn)用放水管以x(m3/h)的速度排水,經(jīng)過y(h)排空,求y與x之間的函數(shù)表達(dá)式,y是x的反比例函數(shù)嗎?20.(7分)已知反比例函數(shù)的解析式為y=,確定a的值,求這個(gè)函數(shù)關(guān)系式.21.(8分)張華同學(xué)在一次做電學(xué)實(shí)驗(yàn)時(shí),記錄下電流I(安)與電阻R(歐)有如表對(duì)應(yīng)關(guān)系:R…2481016…I…16843.22…通過描點(diǎn)、連線,觀察并求出I與R之間的函數(shù)關(guān)系式.
22.(6分)已知反比例函數(shù)y=﹣.
(1)說出這個(gè)函數(shù)的比例系數(shù);
(2)求當(dāng)x=﹣10時(shí)函數(shù)y的值;
(3)求當(dāng)y=6時(shí)自變量x的值.23.(9分)已知反比例函數(shù)y=(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時(shí),試比較x1與x2的大小.
參考答案一、選擇題1.B2.A3.C4.B5.D6.D7.A8.C9.C10.A二、填空題11.612.813.R≥3W14.-815.﹣216.-317.218.4三、解答題19.解:由題意,得
y=,
y是x的反比例函數(shù).20.解:由反比例函數(shù)的解析式為y=,得
,解得a=3,a=﹣3(不符合題意要舍去).21.解:如圖,
由圖可知I與R之間滿足反比例函數(shù)關(guān)系,設(shè)I=,
將(2,16)代入,得k=32,
故I=.22.解:(1)原式=,比例系數(shù)為﹣;
(2)當(dāng)x=﹣10時(shí),y=﹣.
(3)當(dāng)y=6時(shí),﹣=6,解得,x=﹣.23.解:(Ⅰ)由題意,設(shè)點(diǎn)P的坐標(biāo)為(m,2).
∵點(diǎn)P在正比例函數(shù)y=x的圖象上,
∴2=m,即m=2.
∴點(diǎn)P的坐標(biāo)為(2,2).
∵點(diǎn)P在反比例函數(shù)y=的圖象上,
∴2=,解得k=5.
(Ⅱ)∵在反比例函數(shù)y=圖象的每一支上,y隨x的增大而減小,
∴k﹣1>0,解得k>1.
(Ⅲ)∵反比例函數(shù)y=圖象的一支位于第二象限,
∴在該函數(shù)圖象的每一支上,y隨x的增大而增大.
∵點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在該函數(shù)的第二象限的圖象上,且y1>y2,
∴x1>x2.第2章章末檢測(cè)時(shí)間:120分鐘滿分:120分一、選擇題(每小題3分,共30分)1.已知關(guān)于x的方程x2-2x+3k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k<eq\f(1,3)B.k>eq\f(1,3)C.k<eq\f(1,3)且k≠0D.k>-eq\f(1,3)且k≠02.某種品牌運(yùn)動(dòng)服經(jīng)過兩次降價(jià),每件零售價(jià)由560元降為315元,已知兩次降價(jià)的百分率相同,求每次降價(jià)的百分率.設(shè)每次降價(jià)的百分率為x,下面所列的方程中正確的是()A.560(1+x)2=315B.560(1-x)2=315C.560(1-2x)2=315D.560(1-x2)=3153.已知關(guān)于x的一元二次方程x2+mx-8=0的一個(gè)實(shí)數(shù)根為2,則另一實(shí)數(shù)根及m的值分別為()A.4,-2B.-4,-2C.4,2D.-4,24.已知y=eq\r(k-1)x+1是關(guān)于x的一次函數(shù),則一元二次方程kx2+2x+1=0的根的情況為()A.沒有實(shí)數(shù)根B.有一個(gè)實(shí)數(shù)根C.有兩個(gè)不相等的實(shí)數(shù)根D.有兩個(gè)相等的實(shí)數(shù)根5.如圖是某月的日歷表,在此日歷表上可以用一個(gè)矩形圈出3×3個(gè)位置相鄰的9個(gè)數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個(gè)數(shù)中,最大數(shù)與最小數(shù)的積為192,則這9個(gè)數(shù)的和為()A.32B.126C.135D.1446.下列方程,是關(guān)于x的一元二次方程的是()A.(x+1)2=2(x+1)B.eq\f(1,x2)+eq\f(1,x)-2=0C.a(chǎn)x2+bx+c=0D.x2+2x=x2-17.若方程3x2-4x-4=0的兩個(gè)實(shí)數(shù)根分別為x1,x2,則x1+x2的值為()A.-4B.3C.-eq\f(4,3)D.eq\f(4,3)8.使得代數(shù)式3x2-6的值等于21的x的值是()A.3B.-3C.±3D.±eq\r(3)9.用配方法解下列方程,配方正確的是()A.2y2-7y-4=0可化為2eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(7,2)))eq\s\up12(2)=eq\f(81,8)B.x2-2x-9=0可化為(x-1)2=8C.x2+8x-9=0可化為(x+4)2=16D.x2-4x=0可化為(x-2)2=410.方程x-2=x(x-2)的解是()A.x1=x2=1B.x1=0,x2=2C.x1=x2=2D.x1=1,x2=2二、填空題(每小題3分,共24分)11.把一元二次方程(x-3)2=4化為一般形式是____________,其中二次項(xiàng)為_______,一次項(xiàng)系數(shù)為_______,常數(shù)項(xiàng)為_______.12.已知x=1是一元二次方程x2+ax+b=0的一個(gè)根,則代數(shù)式a+b的值是________.13.如果關(guān)于x的一元二次方程x2+4x-m=0沒有實(shí)數(shù)根,那么m的取值范圍是__________.14.若關(guān)于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常數(shù)項(xiàng)為0,則m的值等于________.15.若a為方程x2+x-5=0的解,則a2+a+1的值為________.16.已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0的兩個(gè)實(shí)數(shù)根為x1,x2,若xeq\o\al(2,1)+xeq\o\al(2,2)=4,則m的值為____________.17.要組織一次籃球聯(lián)賽,賽制為單循環(huán)形式(每?jī)申?duì)之間都賽一場(chǎng)),計(jì)劃安排21場(chǎng)比賽,應(yīng)邀請(qǐng)_______支球隊(duì)參加比賽.18.如圖,鄰邊不相等的矩形花圃ABCD,它的一邊AD利用已有的圍墻,另外三邊所圍的柵欄的總長(zhǎng)度是6m.若矩形的面積為4m2,則AB的長(zhǎng)度是________m(可利用的圍墻長(zhǎng)度超過6m).三、解答題(共66分)19.(6分)解下列方程:(1)(2x-1)2=9;(2)x2+3x-4=0;(3)2x2+5x-1=0.20.(6分)嘉淇同學(xué)用配方法推導(dǎo)一元二次方程ax2+bx+c=0(a≠0)的求根公式時(shí),對(duì)于b2-4ac>0的情況,她是這樣做的:由于a≠0,方程ax2+bx+c=0變形為:x2+eq\f(b,a)x=-eq\f(c,a),……第一步x2+eq\f(b,a)x+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,2a)))eq\s\up12(2)=-eq\f(c,a)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,2a)))eq\s\up12(2),……第二步eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(b,2a)))eq\s\up12(2)=eq\f(b2-4ac,4a2),……第三步x+eq\f(b,2a)=eq\r(,\f(b2-4ac,4a2)),……第四步x=eq\f(-b+\r(,b2-4ac),2a).……第五步(1)嘉淇的解法從第_______步開始出現(xiàn)錯(cuò)誤;事實(shí)上,當(dāng)b2-4ac>0時(shí),方程ax2+bx+c=0(a≠0)的求根公式是__________.(2)用配方法解方程:x2-2x-24=0.21.(8分)已知實(shí)數(shù)a,b是方程x2-x-1=0的兩根,求eq\f(b,a)+eq\f(a,b)的值.22.(8分)菜農(nóng)李偉種植的某蔬菜,計(jì)劃以每千克5元的價(jià)格對(duì)外批發(fā)銷售.由于部分菜農(nóng)盲目擴(kuò)大種植,造成該蔬菜滯銷,李偉為了加快銷售,減少損失,對(duì)價(jià)格經(jīng)過兩次下調(diào)后,以每千克3.2元的價(jià)格對(duì)外批發(fā)銷售.(1)求平均每次下調(diào)的百分率;(2)小華準(zhǔn)備到李偉處購買5噸該蔬菜,因數(shù)量多,李偉決定再給予九折優(yōu)惠.試求小華購買蔬菜所需的費(fèi)用.23.(9分)已知關(guān)于x的方程mx2-(m+2)x+2=0.(1)求證:不論m為何值時(shí),方程總有實(shí)數(shù)根;(2)m為何整數(shù)時(shí),方程有兩個(gè)不相等的正整數(shù)根?24.(9分)如圖,某新建火車站站前廣場(chǎng)需要綠化,該項(xiàng)綠化工程中有一塊長(zhǎng)為20米、寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56平方米,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖),問人行通道的寬度是多少米?25.(10分)水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是______________斤(用含x的代數(shù)式表示).(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?26.(10分)如圖,已知A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng).當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B停止時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).問:(1)P、Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),四邊形PBCQ的面積是33cm2?(2)P、Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),點(diǎn)P與Q之間的距離是10cm?參考答案1.A2.B3.D4.A5.D6.A7.D8.C9.D10.D11.x2-6x+5=0x2-6512.-113.m<-414.215.616.-1或-317.718.1解析:設(shè)AB長(zhǎng)為xm,則BC長(zhǎng)為(6-2x)m.依題意得x(6-2x)=4,解得x1=1,x2=2.當(dāng)x=1時(shí),6-2x=4;當(dāng)x=2時(shí),6-2x=2(舍去).即AB的長(zhǎng)度為1m.19.解:(1)x1=2,x2=-1;(2分)(2)x1=-4,x2=1;(4分)(3)x1=eq\f(-5+\r(33),4),x2=eq\f(-5-\r(33),4).(6分)20.解:(1)四x=eq\f(-b±\r(,b2-4ac),2a)(2分)(2)x2-2x=24,x2-2x+1=24+1,(x-1)2=25,(4分)x-1=±5.∴x1=6,x2=-4.(6分)21.解:∵實(shí)數(shù)a,b是方程x2-x-1=0的兩根,∴a+b=1,ab=-1,(4分)∴eq\f(b,a)+eq\f(a,b)=eq\f(b2+a2,ab)=eq\f((a+b)2-2ab,ab)=-3.(8分)22.解:(1)設(shè)平均每次下調(diào)的百分率為x,由題意得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).答:平均每次下調(diào)的百分率為20%.(4分)(2)3.2×0.9×5000=14400(元).(7分)答:小華購買蔬菜所需費(fèi)用為14400元.(8分)23.(1)證明:∵當(dāng)m≠0時(shí),Δ=(m+2)2-8m=m2-4m+4=(m-2)2.∵(m-2)2≥0,∴Δ≥0,即方程有實(shí)數(shù)根.(3分)當(dāng)m=0時(shí),原方程變形為-2x+2=0,即x=1.∴不論m為何值時(shí),方程總有實(shí)數(shù)根;(5分)(2)解:解方程得x=eq\f(m+2±(m-2),2m),x1=eq\f(2,m),x2=1.(7分)∵方程有兩個(gè)不相等的正整數(shù)根,∴m=1或2,當(dāng)m=2時(shí),Δ=0,不合題意,∴m=1.(9分)24.解:設(shè)人行通道的寬度為x米,則根據(jù)題意,得(20-3x)(8-2x)=56,解得x1=2,x2=eq\f(26,3).(6分)當(dāng)x=eq\f(26,3)時(shí),8-2x<0,故舍去,∴x=2.(8分).答:人行通道的寬為2米.(9分)25.解:(1)(100+200x)(3分)(2)根據(jù)題意得(4-2-x)(100+200x)=300,解得x1=eq\f(1,2),x2=1.(6分)∵每天至少售出260斤,當(dāng)x=eq\f(1,2)時(shí),100+200x=200<260,當(dāng)x=1時(shí),100+200x=300>260,∴x=1.(9分)答:張阿姨需將每斤的售價(jià)降低1元.(10分)26.解:(1)設(shè)經(jīng)過xs,則BP=(16-3x)cm,CQ=2xcm.由題意得(16-3x+2x)×6×eq\f(1,2)=33,解得x=5.(3分)答:經(jīng)過5s,四邊形PBCQ的面積是33cm2.(4分)(2)設(shè)出發(fā)ts,點(diǎn)P與點(diǎn)Q之間的距離是10cm,則BP=(16-3t)cm,CQ=2tcm.過Q作QH⊥AB于H,∴HQ=AD=6cm,PH=|16-5t|cm.(6分)在Rt△PQH中,由勾股定理得PH2+HQ2=PQ2,即(16-5t)2+62=102,解得t1=1.6,t2=4.8.即出發(fā)1.6s或4.8s時(shí),點(diǎn)P與Q之間的距離是10cm.(10分)第3章章末檢測(cè)(時(shí)間:90分鐘滿分:120分)一.選擇題(每小題3分,共30分)1.如果=,那么的值是() A. B. C. D. 2.下列各組中的四條線段成比例的是() A.a(chǎn)=,b=3,c=2,d= B. a=4,b=6,c=5,d=10 C.a(chǎn)=2,b=,c=2,d= D. a=2,b=3,c=4,d=13.已知,C是線段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=() A.﹣1 B. (+1) C. 3﹣ D. (﹣1)4.如圖,在△ABC中,DE∥BC,,DE=4,則BC的長(zhǎng)是() A.8 B. 10 C.11 D.125.已知,△ABC∽△DEF,△ABC與△DEF的面積之比為1:2,當(dāng)BC=1,對(duì)應(yīng)邊EF的長(zhǎng)是() A. B. 2 C. 3 D. 46.已知圖(1)、(2)中各有兩個(gè)三角形,其邊長(zhǎng)和角的度數(shù)已在圖上標(biāo)注,圖(2)中AB、CD交于O點(diǎn),對(duì)于各圖中的兩個(gè)三角形而言,下列說法正確的是() A.只有(1)相似 B.只有(2)相似 C.都相似 D.都不相似7.在平行四邊形ABCD中,點(diǎn)E是邊AD上一點(diǎn),且AE=2ED,EC交對(duì)角線BD于點(diǎn)F,則等于() A. B. C. D.8.如圖,身高1.8m的小超站在某路燈下,發(fā)現(xiàn)自己的影長(zhǎng)恰好是3m,經(jīng)測(cè)量,此時(shí)小超離路燈底部的距離是9m,則路燈離地面的高度是() A.5.4m B. 6m C. 7.2m D. 9m第10題圖第9題圖第8題圖第10題圖第9題圖第8題圖9.如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,∠OCD=90°,CO=CD.若B(1,0),則點(diǎn)C的坐標(biāo)為() A.(1,2) B. (1,1) C. (,) D. (2,1)10.如圖,△ABC中,點(diǎn)D在線段AB上,且∠BAD=∠C,則下列結(jié)論一定正確的是() A.AB2=AC?BD B.AB?AD=BD?BC C.AB2=BC?BD D.AB?AD=BD?CD二.填空題(每小題4分,共32分)11.已知≠0,則的值為.12.如圖,已知點(diǎn)C是線段AB的黃金分割點(diǎn),且BC>AC.若S1表示以BC為邊的正方形面積,S2表示長(zhǎng)為AB、寬為AC的矩形面積,則S1與S2的大小關(guān)系為.13.給出下列幾何圖形:①兩個(gè)圓;②兩個(gè)正方形;③兩個(gè)矩形;④兩個(gè)正六邊形;⑤兩個(gè)等邊三角形;⑥兩個(gè)直角三角形;⑦兩個(gè)菱形.其中,一定相似的有(填序號(hào)).14.把一矩形紙片對(duì)折,如果對(duì)折后的矩形與原矩形相似,則原矩形紙片的長(zhǎng)與寬之比為.15.已知△ABC∽△DEF,△ABC與△DEF的相似比為4:1,則△ABC與△DEF對(duì)應(yīng)邊上的高之比為.16.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=.第17題圖第16題圖第17題圖第16題圖第18題圖第18題圖17.如圖,是小明設(shè)計(jì)用手電來測(cè)量都勻南沙州古城墻高度的示意圖,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測(cè)得AB=1.2米,BP=1.8米,PD=12米,那么該古城墻的高度是米(平面鏡的厚度忽略不計(jì)).18.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,CD=2,BD=1,則AD的長(zhǎng)是,AC的長(zhǎng)是.三.解答題(共58分)19.(8分)如圖,在邊上為1個(gè)單位長(zhǎng)度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后的△A1B1C1.(2)以點(diǎn)B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請(qǐng)?jiān)诰W(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.20.(8分)已知:如圖,在△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B,C點(diǎn)重合),∠ADE=45°.求證:△ABD∽△DCE.21.(10分)在平行四邊形ABCD中,E為BC邊上的一點(diǎn).連結(jié)AE.(1)若AB=AE,求證:∠DAE=∠D;(2)若點(diǎn)E為BC的中點(diǎn),連接BD,交AE于F,求的值.22.(10分)如圖,已知△ABC中,AB=,AC=,BC=6,點(diǎn)M為AB的中點(diǎn),在線段AC上取點(diǎn)N,使△AMN與△ABC相似,求MN的長(zhǎng).23.(10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.(1)求證:△AEF∽△ABC;(2)求這個(gè)正方形零件的邊長(zhǎng);(3)如果把它加工成矩形零件如圖2,問這個(gè)矩形的最大面積是多少?24.(12分)如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在x軸負(fù)半軸上,頂點(diǎn)C在x軸正半軸上,頂點(diǎn)B在第一象限,過點(diǎn)B作BD⊥y軸于點(diǎn)D,線段OA,OC的長(zhǎng)是一元二次方程x2﹣12x+36=0的兩根,BC=4,∠BAC=45°.(1)求點(diǎn)A,C的坐標(biāo);(2)反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,求k的值;(3)在y軸上是否存在點(diǎn)P,使以P,B,D為頂點(diǎn)的三角形與以P,O,A為頂點(diǎn)的三角形相似?若存在,請(qǐng)寫出滿足條件的點(diǎn)P的個(gè)數(shù),并直接寫出其中兩個(gè)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.參考答案一.選擇題(共10小題)1.C2.C3.A4.D5.A6.C7.A8.C9.B10.C二.填空題(共8小題)11.12.S1=S213.①②④⑤14.:115.4:116.1:3:517.818.42三.解答題(共6小題)19.解:(1)如圖:(2)如圖所示:(a)(a)(3)如圖所示:(b)(b)△CC1C2的面積為×3×6=9.20.證明:∵∠BAC=90°,AB=AC=1,∴△ABC為等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.21.證明:(1)在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E為BC的中點(diǎn),∴BE=BC=AD,∴EF:FA=1:2.22.解:①圖1,作MN∥BC交AC于點(diǎn)N,則△AMN∽△ABC,有,∵M(jìn)為AB中點(diǎn),AB=,∴AM=,∵BC=6,∴MN=3;②圖2,作∠ANM=∠B,則△ANM∽△ABC,有,∵M(jìn)為AB中點(diǎn),AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的長(zhǎng)為3或.23.解:(1)∵四邊形EGFH為矩形,∴BC∥EF,∴△AEF∽△ABC;(2)設(shè)正方形零件的邊長(zhǎng)為a在正方形EFGH中,EF∥BC,EG∥AD∴△AEF∽△ABC,△BFG∽△BAD∴,,∴,即.解得a=48.即正方形零件的邊長(zhǎng)為48.(3)設(shè)長(zhǎng)方形的長(zhǎng)為x,寬為y,當(dāng)長(zhǎng)方形的長(zhǎng)在BC時(shí),由(1)知:.∵,∴當(dāng),即x=60,y=40,xy最大為2400.當(dāng)長(zhǎng)方形的寬在BC時(shí),,∵,∴當(dāng),即x=40,y=60,xy最大為2400,又∵x≥y,所以長(zhǎng)方形的寬在BC時(shí),面積<2400綜上,長(zhǎng)方形的面積最大為2400.24.解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如圖1,過點(diǎn)B作BE⊥AC,垂足為E,∵∠BAC=45°,∴AE=BE,設(shè)BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合題意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如圖2,若點(diǎn)P在OD上,若△PDB∽△AOP,則,即解得:OP=2或OP=6∴P(0,2)或P(0,6);如圖3,若點(diǎn)P在OD上方,△PDB∽△AOP,則,即,解得:OP=12,∴P(0,12);如圖4,若點(diǎn)P在OD上方,△BDP∽△AOP,則,即,解得:OP=4+2或OP=4﹣2(不合題意舍去),∴P(0,4+2);如圖5,若點(diǎn)P在y軸負(fù)半軸,△PDB∽△AOP,則,即,解得:OP=﹣4+2或﹣4﹣2,則P點(diǎn)坐標(biāo)為(0,﹣2﹣4)或(0,﹣4+2)(不合題意舍去).∴點(diǎn)P的坐標(biāo)為:(0,2)或(0,6)或(0,12)或(0,﹣4+2)或(0,﹣2﹣4).第4章章末檢測(cè)(時(shí)間:90分鐘滿分:120分)一、選擇題(每小題3分,共36分)1.在Rt△ABC中,∠C=90°,sinA=,那么tanB的值是(
)A.
B.
C.
D.
2.下列計(jì)算正確的是(
)A.
sin60°﹣sin30°=sin30°
B.
sin245°+cos245°=1
C.
cos60
D.
cos303.在Rt△ABC中,已知∠C=90°,AC=12,BC=5,則cosA等于(
)A.
B.
C.
D.
4.在△ACB中,AB=10,sinA=,則BC的長(zhǎng)為(
)A.
6
B.
7.5
C.
8
D.
不能確定5.在△ABC中,若|sinA-|+(cosB-)2=0,則∠C的度數(shù)是()A.
30°
B.
45°
C.
60°
D.
90°6.如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)C的南偏東30°方向上,已知點(diǎn)C在點(diǎn)B的北偏西60°方向上,且B,C兩地相距120海里.若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè)?,?dāng)?shù)竭_(dá)點(diǎn)A′時(shí),測(cè)得點(diǎn)B在A′的南偏東75°的方向上,則此時(shí)“中國海監(jiān)50”的航行距離是(
)
A.
40
B.
60﹣20
C.
20
D.
207.如圖,在△ABC中,∠C=90°,AB=5,BC=3,則cosA的值是(
)A.
B.
C.
D.
8.在“測(cè)量旗桿的高度”的數(shù)學(xué)課題學(xué)習(xí)中,某學(xué)習(xí)小組測(cè)得太陽光線與水平面的夾角為27°,此時(shí)旗桿在水平地面上的影子的長(zhǎng)度為24米,則旗桿的高度約為()
A.
24米
B.
20米
C.
16米
D.
12米9.如圖,數(shù)學(xué)實(shí)踐活動(dòng)小組要測(cè)量學(xué)校附近樓房CD的高度,在水平地面A處安置測(cè)傾器測(cè)得樓房CD頂部點(diǎn)D的仰角為45°,向前走20米到達(dá)A′處,測(cè)得點(diǎn)D的仰角為67.5°,已知測(cè)傾器AB的高度為1.6米,則樓房CD的高度約為(結(jié)果精確到0.1米,≈1.414)(
)
A.
34.14米
B.
34.1米
C.
35.7米
D.
35.74米10.在Rt△中,∠C=90°,BC=1,那么AB的長(zhǎng)為(
)A.
B.
C.
D.
11.如圖,以O(shè)為圓心,任意長(zhǎng)為半徑畫弧,與射線OM交于點(diǎn)A,再以A為圓心,AO長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)B,畫射線OB.則cos∠AOB的值等于()
?A.
?
B.
C.
?
D.
?12.如圖,是我們數(shù)學(xué)課本上采用的科學(xué)計(jì)算器面板,利用該型號(hào)計(jì)算器計(jì)算cos55°,按鍵順序正確的是(
)
A.
B.
C.
D.
二、填空題(每小題4分,共40分)13.河堤橫斷面如圖,堤高BC=5米,迎水坡AB的坡度是1:(坡度是坡面的鉛直高度BC與水平寬度AC之比),則AB的長(zhǎng)是________
.
14.在正方形的網(wǎng)格中,△ABC的位置如圖,則tanB的值為________.
15.一個(gè)小球由地面沿著坡度1:2的坡面向上前進(jìn)了10米,此時(shí)小球距離地面的高度為________米.16.王小勇操縱一輛遙控汽車從A處沿北偏西60°方向走10m到B處,再從B處向正南方走20m到C處,此時(shí)遙控汽車離A處________
m.17.如圖,BD⊥AC于點(diǎn)D,DE∥AB,EF⊥AC于點(diǎn)F,若BD平分∠ABC,則與∠CEF相等的角(不包括∠CEF)的個(gè)數(shù)是________.
?18.AE、CF是銳角三角形ABC的兩條高,若AE:CF=3:2,則sinA:sinC等于________
.19.如圖,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測(cè)得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這n秒中上升的高度是________km.
20.如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC=6,則AB的長(zhǎng)為________.21.如圖1是小志同學(xué)書桌上的一個(gè)電子相框,將其側(cè)面抽象為如圖2所示的幾何圖形,已知BC=BD=15cm,∠CBD=40°,則點(diǎn)B到CD的距離為________cm(參考數(shù)據(jù)sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器).
22.計(jì)算:2sin45°=________.三、解答題(共3題,共44分)23.(14分)如圖,海面上B、C兩島分別位于A島的正東和正北方向.一艘船從A島出發(fā),以18海里/時(shí)的速度向正北方向航行2小時(shí)到達(dá)C島,此時(shí)測(cè)得B島在C島的南偏東43°.求A、B兩島之間的距離.(結(jié)果精確到0.1海里)
【參考數(shù)據(jù):sin43°=0.68,cos43°=0.73,tan43°=0.93】
?24.(14分)如圖,為了測(cè)量某山AB的高度,小明先在山腳下C點(diǎn)測(cè)得山頂A的仰角為45°,然后沿坡角為30°的斜坡走100米到達(dá)D點(diǎn),在D點(diǎn)測(cè)得山頂A的仰角為30°,求山AB的高度.(參考數(shù)據(jù):≈1.73)
25.(16分)測(cè)量計(jì)算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測(cè)旗桿頂點(diǎn)A的仰角為50°,觀測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
參考答案一、選擇題1.A2.B3.C4.D5.D6.B7.D8.D9.C10.D11.B12.C二、填空題13.10m14.15.216.1017.418.2:319.(20﹣20)20.421.14.122.三、解答題23.解:由題意得,AC=18×2=36海里,∠ACB=43°.
在Rt△ABC中,∵∠A=90°,
∴AB=AC?tan∠ACB=36×0.93≈33.5海里.
故A、B兩島之間的距離約為33.5海里.24.解:過D作DE⊥BC于E,作DF⊥AB于F,
設(shè)AB=x,
在Rt△DEC中,∠DCE=30°,CD=100,
∴DE=50,CE=50.
在Rt△ABC中,∠ACB=45°,
∴BC=x.
則AF=AB﹣BF=AB﹣DE=x﹣50,
DF=BE=BC+CE=x+50.
在Rt△AFD中,∠ADF=30°,tan30°=,
∴,
∴x=50(3+)≈236.5.
經(jīng)檢驗(yàn):x=50(3+)是原分式方程的解.
答:山AB的高度約為236.5米.25.(1)解:∵∠BDC=45°,∠C=90°,
∴BC=DC=20m.
答:建筑物BC的高度為20m.
(2)解:設(shè)DC=BC=xm,
根據(jù)題意可得:tan50°==≈1.2,
解得:x=25.
答:建筑物BC的高度為25m.第5章章末檢測(cè)(時(shí)間:45分鐘滿分:100分)一、選擇題(本大題共8個(gè)小題,每小題3分,共24分)1.某紡織廠從10萬件同類產(chǎn)品中隨機(jī)抽取了100件進(jìn)行質(zhì)檢,發(fā)現(xiàn)其中有5件不合格,那么估計(jì)該廠這10萬件產(chǎn)品中合格品約為()A.9.5萬件B.9萬件C.9500件D.5000件某鞋店試銷一款女鞋,試銷期間對(duì)不同顏色鞋的銷量情況統(tǒng)計(jì)如下表:顏色黑色棕色白色紅色銷售量(雙)75453255鞋店經(jīng)理最關(guān)心的是哪種顏色的鞋最暢銷,則對(duì)鞋店經(jīng)理最有意義的統(tǒng)計(jì)量是()A.平均數(shù)B.眾數(shù)C.中位數(shù)C.以上都不是3.某農(nóng)科院對(duì)甲、乙兩種甜玉米各用10塊相同條件的試驗(yàn)田進(jìn)行試驗(yàn),得到兩個(gè)品種每公頃產(chǎn)量的兩組數(shù)據(jù),其方差分別為s甲2=0.002、s乙2=0.03,則()A.甲比乙的產(chǎn)量穩(wěn)定B.乙比甲的產(chǎn)量穩(wěn)定C.甲、乙的產(chǎn)量一樣穩(wěn)定D.無法確定哪一品種的產(chǎn)量更穩(wěn)定4.去年某校有1500人參加中考,為了了解他們的數(shù)學(xué)成績(jī).從中抽取200名考生的數(shù)學(xué)成績(jī),其中有60名考生達(dá)到優(yōu)秀,那么該??忌_(dá)到優(yōu)秀的人數(shù)約有()A.400名B.450名C.475名D.500名5.某校對(duì)460名初三學(xué)生進(jìn)行跳繩技能培訓(xùn),以提高同學(xué)們的跳繩成績(jī).為了解培訓(xùn)的效果,隨機(jī)抽取了40名同學(xué)進(jìn)行測(cè)試,測(cè)試結(jié)果分成“不合格”、“合格”、“良好”、“優(yōu)秀”四個(gè)等級(jí),并繪制了如圖所示的統(tǒng)計(jì)圖,從圖中可以估計(jì)出該校460名初三學(xué)生中,能獲得跳繩“優(yōu)秀”的總?cè)藬?shù)大約是()A.10B.16C.115D.1506.某校在“愛護(hù)地球綠化祖國”的創(chuàng)建活動(dòng)中,組織學(xué)生開展植樹造林活動(dòng).為了解全校學(xué)生的植樹情況,學(xué)校隨機(jī)抽查了100名學(xué)生的植樹情況,將調(diào)查數(shù)據(jù)整理如下表:植樹數(shù)量(單位:棵)456810人數(shù)302225158若該校共有1000名學(xué)生,請(qǐng)根據(jù)以上調(diào)查結(jié)果估計(jì)該校學(xué)生的植樹總棵數(shù)是()A.58B.580C.1160D.58007.為了了解我市某學(xué)校“書香校園”的建設(shè)情況,檢查組在該校隨機(jī)抽取40名學(xué)生,調(diào)查了解他們一周閱讀課外書籍的時(shí)間,并將調(diào)查結(jié)果繪制成如圖所示的頻數(shù)分布直方圖(每小組的時(shí)間包含最小值,不包含最大值),根據(jù)圖中信息估計(jì)該校學(xué)生一周課外閱讀時(shí)間不少于4小時(shí)的人數(shù)占全校人數(shù)的百分?jǐn)?shù)約等于()A.50%B.55%C.60%D.65%8.一個(gè)不透明的口袋里裝有除顏色外都相同的5個(gè)白球和若干個(gè)紅球,在不允許將球倒出來數(shù)的前提下,小亮為了估計(jì)其中的紅球數(shù),采用如下方法:先將口袋中的球搖勻,再從口袋里隨機(jī)摸出一球,記下顏色,然后把它放回口袋中,不斷重復(fù)上述過程,小亮共摸了100次,其中有10次摸到白球.因此小亮估計(jì)口袋中的紅球大約有()A.45個(gè)B.48個(gè)C.50個(gè)D.55個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)9.為了考察甲、乙兩種油菜花的長(zhǎng)勢(shì),分別從中抽取了20株測(cè)得其高度,并求得它們的方差分別為s甲2=3.6米2,s乙2=12.8米2,則種油菜花長(zhǎng)勢(shì)比較整齊.10.從某市5000份試卷中隨機(jī)抽取了400份試卷,其中有360份成績(jī)合格,估計(jì)全市成績(jī)合格的人數(shù)約為.11.從某校參加畢業(yè)會(huì)考的學(xué)生中,隨機(jī)抽查了20名學(xué)生的數(shù)學(xué)成績(jī),分?jǐn)?shù)如下:90848886987861541009795847071778572637948可以估計(jì)該校這次參加畢業(yè)會(huì)考的數(shù)學(xué)平均成績(jī)?yōu)?12.某學(xué)校為了做好道路交通安全教育工作,隨機(jī)抽取本校100名學(xué)生就上學(xué)的交通方式進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制扇形圖如圖所示.若該校共有1000名學(xué)生,請(qǐng)你估計(jì)全校步行上學(xué)的學(xué)生人數(shù)約有人.13.漳州市某校在開展慶“六
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版?zhèn)€人獨(dú)資企業(yè)股權(quán)轉(zhuǎn)讓合同范本與反壟斷審查要求
- 2025年個(gè)人與個(gè)人草原生態(tài)補(bǔ)償項(xiàng)目實(shí)施合同范本3篇
- 二零二五年度池塘生態(tài)旅游項(xiàng)目租賃合同范本3篇
- 二零二五年度櫥浴柜智能控制系統(tǒng)集成供貨安裝服務(wù)合同3篇
- 二零二五年度農(nóng)業(yè)園區(qū)租賃合同及農(nóng)產(chǎn)品銷售協(xié)議3篇
- 2025承分包合同安全協(xié)議(新)
- 2025個(gè)人民間借款合同范本簡(jiǎn)易版
- 2025年充電樁設(shè)備租賃與運(yùn)營管理合同3篇
- 主體工程勞務(wù)承包合同書(2024版)
- 2025委托技術(shù)開發(fā)合同書范文
- 城市基礎(chǔ)設(shè)施修繕工程的重點(diǎn)與應(yīng)對(duì)措施
- 圖像識(shí)別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 個(gè)體戶店鋪?zhàn)赓U合同
- 禮盒業(yè)務(wù)銷售方案
- 術(shù)后肺炎預(yù)防和控制專家共識(shí)解讀課件
- 二十屆三中全會(huì)精神學(xué)習(xí)試題及答案(100題)
- 中石化高級(jí)職稱英語考試
- 小學(xué)五年級(jí)英語閱讀理解(帶答案)
- 2024二十屆三中全會(huì)知識(shí)競(jìng)賽題庫及答案
- 仁愛版初中英語單詞(按字母順序排版)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項(xiàng)目可行性研究報(bào)告編制標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論