版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Comparisonofsaturatordesignsfordeliveryoflow-volatilityliquidprecursors
JamesE.Maslar,*,1WilliamA.Kimes,1VladimirB.Khromchenko,1BrentA.Sperling,2and
RavindraK.Kanjolia3
1NationalInstituteofStandardsandTechnology,100BureauDrive,Gaithersburg,MD20899
2EMDElectronics,Tamaqua,PA18252
3EMDElectronics,Haverhill,MA01832
*Correspondingauthor:E-mail:jmaslar@
2
ABSTRACT
Numerouslow-volatilityprecursorsareutilizedinchemicalvapordepositionandatomiclayerdepositionprocesses.Suchprecursorsareoftendeliveredfromoneoftwocommonsaturatordesigns:abubbleroraflowovervessel.Previousreportsconcerningprecursordeliveryfromsuchvesselshavefocusedprimarilyoncontinuousdeliveryofmoderatetohighvolatilityliquidsandsolids.Fewreportshavefocusedoncyclicaldeliveryoflowvolatilityprecursorsatreducedpressures.Thislackofknowledgeconcerningsuchprocessescanbeahindrancetoefficientselectionofdepositionconditionsandvesseldesign.Theobjectiveofthisinvestigationwastocomparetheperformanceofthesetwosaturatordesignsforpulsedinjectionatreducedpressuresusingthelowvolatilityliquidprecursorμ2-η2-(But-acetylene)dicobalthexacarbonyl(CCTBA).ThebasisofthiscomparisonwasthemeasurementofCCTBAmasscarryoverperinjectionasafunctionofinjectionnumber,injectiontime,carriergasflowrate,systempressure,andvesselidletime.Themasscarryoverwasdeterminedfromabsorbancemeasurementsperformedusinganon-dispersiveinfraredgasanalyzer.Themeasuredmasscarryoverforbothvesselswascomparedtothetheoreticalmasscarryoverdeterminedusingasimpleanalyticalmodelbaseduponthe“bubblerequation”.Inthecaseofthebubbler,thismodeldescribedthevesselperformancewellwithknowledgeoftheprecursorvaporpressureandvesselheadspacepressure.Inthecaseoftheflowovervessel,thismodeldescribedtheoverallvesselperformancepoorlyunlessanadditionalvesselefficiencyfactorwasincluded,afactorthatisdifficulttopredictapriori.Furthermore,theefficiencyfactorwasnotnecessarilyconstantforaseriesofinjections:theefficiencyfactortendedtodecreasefromthefirstinjectionuntilastablevaluewasachieved,avaluethatdependedontheprocessconditions.Thislimitationofthemodelwasattributedtothespecificflowdynamicsassociatedwiththeflowovervesseldesign.Computationalfluiddynamicssimulationswereable
3
toreproducethemasscarryoveroftheflowovervessel,afterestimatingtheCCTBA-carriergasbinarydiffusioncoefficient.Thesesimulationsalsoshowedthatalargerbinarydiffusioncoefficientandahighervaporpressurebothledtoanincreaseinmasscarryoverbutvesselefficiencycouldnotequalthatofthebubbler.WhiletheseresultswereobtainedwithCCTBA,thegeneralrelationshipsbetweenmasscarryoverandthevariousprocessparametersinthesesaturatorsareexpectedtobesimilarforotherlow-volatilityprecursors.
4
1.Introduction
Numerouslow-volatilityprecursorsareutilizedinchemicalvapordeposition(CVD)andatomiclayerdeposition(ALD)processes.Suchprecursorsareoftendeliveredfromtheprecursorvesseltothedepositionsurfacebyevaporating(subliming)aliquid(solid)precursortogenerateavaporwhichisentrainedinacarriergas.Ideally,thecarriergasissaturatedinthevesselheadspacewiththeprecursorvaporattheprecursorvaporpressure.MostpreviousreportsdescribingsaturatordesignandperformancewerefocusedoncontinuousdeliveryofmoderatetohighvolatilityprecursorsforCVDororganometallicvaporphaseepitaxy(OMVPE)processes.1-27Whendescribingliquidprecursordelivery,previousreportshavenaturallyfocusedonbubblers.2,4,6-13,25-27(Inthiswork,a“bubbler”referstoavesselconfiguredwithadiptubeonthegasinletportthatextendsnearlytothebottomofthevessel.)However,evenwhendescribingsolidprecursordelivery,themajorityofpreviousreportsfocusedonsaturatordesignsinwhichthecarriergaswasdirectedthroughtheprecursorbed.Suchdesignsincludeinvertedorreversebubbler-typevesselsandsometimesincorporaterestrictedflowpathswithmultipletraysorchambers.1,3-6,10,13-24Whilesuchdesignshavebeenshowntoprovideexcellentperformance(atleastundersomeconditions),thesedesignscanbemorecostlytomanufactureandclean.Hence,simplerflowovervesselsareoftenutilizedforprecursordelivery.(Inthiswork,a“flowovervessel”referstoavesselthroughwhichcarriergasflowsbutwhichhasnodiptube:thegasinletandoutletportsopendirectlyintothevesselheadspace.)
PreviousprecursordeliverystudieshavehelpedtoidentifyprocessconditionsandvesseldesigncharacteristicsthataredesirableforcontinuousdeliveryofmoderatetohighvolatilityprecursorsforCVDorOMVPEprocesses,oftenatelevatedpressures.However,theprocessconditionsandvesselcharacteristicsthataredesirableforpulseddeliveryoflowvolatility
5
precursorsatreducedpressureshavenotbeenwidelyidentified.Thereareafewreportsdescribingprecursordeliveryundersuchconditions,includingaliquidfromabubbler28andasolidfromaflowovervessel.29,30However,itisdifficulttocomparedefinitivelytheperformanceofabubblerandflowovervesselfromthesereportsbecausetheprecursorsandflowconditionsweredifferent.Itiswellknownthatanumberoffactorscanleadtonon-reproducibledeliveryofsolidprecursorsandthatthesefactorscanberelatedbothtothephysicochemicalpropertiesoftheprecursorandtheflowcharacteristicsoftherespectiveprecursorvessel.1,3-5,10,15,16,18,19,21,23,24,30-32Therefore,itissometimesdifficulttodifferentiatebetweentheimpactondeliveryofvesselflowcharacteristicsandprecursorproperties.Hence,amorestraight-forwardcomparisonofvesseldesignsforprecursordeliverywouldinvolvethesameprecursor.
Theobjectiveofthisinvestigationwastocomparedirectlytheperformanceofabubblerandaflowovervesselfordeliveryoflow-volatilityprecursorsduringreduced-pressure,cyclicaldepositionprocesses,e.g.,pulsedCVDandALDprocesses.Thesameliquidprecursor,μ2-η2-(But-acetylene)dicobalthexacarbonyl(CCTBA),wasutilizedinbothvessels.Aliquidwasexaminedtoavoidanyadditionalcomplicationsthatcanbeassociatedwiththeuseofsolids,therebypermittingamorestraight-forwardcomparisonofthevesselperformance.ThebasisofthiscomparisonwasthemeasurementofCCTBAmasscarryoverperinjectionasafunctionofinjectionnumber,durationofprecursorinjection(tinj),carriergasflowrate,systempressure,anddurationofthevesselidlebetweeninjections(tidle).Massvalueswereobtainedfromdirectabsorbancemeasurementsperformedusinganon-dispersiveinfrared(NDIR)gasanalyzer.Themeasuredmasscarryoverforbothvesselswascomparedtothetheoreticalmasscarryoverdeterminedfromamodelbaseduponthe“bubblerequation”.2,7-11,33Themasscarryoverfromtheflowovervesselwasalsocomparedtothatobtainedfromcomputationalfluiddynamics(CFD)
6
simulations.Thefocusofthisinvestigationwasonthefollowingdeliveryconditions:tinj≤2s,tidle≤8sortidle≥180s,vesselheadspacepressuresbetween1.2kPaand7.8kPa,andcarriergasflowratesrangingfrom0.25L/minto0.75L/min.Theresultsofthisstudyshouldhelpelucidatetheimpactofprocessconditionsandvesseldesignonprecursordeliveryfortwocommonsaturatordesignsoperatingunderprocessconditionsthatarenotwidelyreportedupon.
2.Experimentalprocedure
2.1.Materials
Astainlesssteelbubblerandflowovervesselwerecompared.Eachvesselhadnominallythesame必1.5Lvolumeandspecificdimensions,asdescribedelsewhere.30Approximately200gofmicroelectronics-gradeCCTBA(EMDElectronics?)wassuppliedineachvessel(theCCTBAwasusedasreceived).Ultra-high-puritygradeargonwasusedasthecarriergasandwasfurtherpurifiedwithapoint-of-usepurifier.
2.2Flowsystem
Thedesignandoperationoftheflowsystemhavebeendescribedpreviously34,35andwillonlybedescribedbriefly.AschematicoftheflowsystemusedforeachvesselisshowninFig.1.Thecarriergasflowratewascontrolledwithamassflowcontroller(MFC)andthesystempressurewasmeasuredusingonecapacitancediaphragmgaugeupstreamoftheprecursorvessel(CDG1)andonedownstream(CDG2).ThetotalpressureatCDG1andCDG2aredesignatedbyPCDG1andPCDG2,respectively.Opticalaccesstothegasflowwasachievedwithoneoftwoopticalflowcells
?Certaincommercialequipment,instruments,andmaterialsareidentifiedinthispublicationtoadequatelyspecifytheexperimentalprocedure.Suchidentificationinnowayimpliesapproval,recommendation,orendorsementbytheNationalInstituteofStandardsandTechnology,nordoesitimplythattheequipment,instruments,ormaterialsidentifiedarenecessarilythebestavailableforthepurpose.
7
(FC1andFC2)locateddownstreamoftheprecursorvessel.Theconductanceoftheflowsystemwasadjustedusingamanualthrottlevalve(TV).Fivevalveswereusedtocontrolgasdistribution:threepneumaticvalves(PVin,PVby,andPVout)tocontrolgasswitchingduringarunandtwomanualvalves(MVinandMVout)toisolatethevesselwhennotinuse(themanualvalveswereopenforallmeasurements).PVinandMVinandPVoutandMVoutwerelocatedontheinletandoutletlinesofthevessel,respectively.PVbywaslocatedonthelinethatbypassesthevessel.Forthebubbler[seeFig.1(a)],PVin,PVby,andPVoutwere2-portvalveswhileMVinandMVoutwere3-portvalves.The3-portvalvesonthebubblerwereconfiguredina“T”inwhichonesideofthearmofthe“T”wasvalvedandflowwasunimpededfromthestemofthe“T”throughthenon-valvedsideofthearm.Fortheflowovervessel[seeFig.1(b)],PVby,MVin,andMVoutwere2-portvalveswhilePVinandPVoutwere3-portvalves.The3-portvalvesontheflowovervesselwereconfiguredina“T”inwhichthestemofthe“T”wasvalvedandflowwasunimpededthroughthearmofthe“T”.Gasflowwasinitiatedinthevessel-idle/line-purgeconfiguration(noflowthroughthevessel)byopeningPVby(whilePVinandPVoutwereclosed),settingtheMFCtothedesiredflowrate,andadjustingTVtoobtainthedesiredpressureatCDG2.Intheinjectionconfiguration,carriergaswasdirectedthroughthevesselbyopeningPVinandPVout(whilePVbywasclosed).Theargonflowratesemployedinthisworkwere0.25L/min,0.50L/min,and0.75L/minatstandardtemperatureandpressure(STP),definedas0°Cand101.33kPa,respectively.Insubsequentdiscussions,flowratesarereferencedtoSTP.TheTVwassettoprovideeither1.3kPaor4.7kPaatCDG2fora0.50L/minflowrateandnotadjustedsubsequently.TheflowconditionsaresummarizedinTableI.AllsurfacesfromCDG1toTVwereheated.Thesublimator,FC1,andFC2wereencasedinaluminumjacketswhichwereheatedwithstripandcartridgeheaters,respectively.Linesandvalveswerewrappedandheatedwithheating
8
tapes(thevalvesweremountedonaluminumblockstofacilitateheatdistribution).Allheatedcomponentswereinsulatedwithhigh-temperaturesiliconefoam.Thetemperaturesetpointforthevessel,thevalvesandinletline,andtherestoftheflowsystemwere50°C,55°C,and63°C,respectively.
TableI.TheTVdesignationsandtheassociatedargonflowrateandtotalpressureatCDG2used
forsettingtheconductanceandthecorrespondingconditionsduringmeasurements.
Designation
Conditionsforsettingconductance
Conditionsformeasurements
Arflowrate
(L/min)
PCDG2
(kPa)
Arflowrate
(L/min)
PCDG2
(kPa)
TV-1
0.50
1.3
0.250.7to1.0
0.501.1to1.6
0.751.6to2.1
TV-2
0.50
4.7
0.252.6to2.9
0.504.4to4.9
0.756.0to6.6
2.3NDIRgasanalyzer
TheNDIRgasanalyzerhasbeendescribedelsewhere35andwillonlybedescribedbriefly.AnalyzeroperationwasbasedonadirectabsorptionmeasurementofCCTBAintheC≡O(shè)stretchingmodespectralregion.Analyzerdesignincludedabroadbandinfraredsource,a4.95mcenter-wavelengthbandpassfilter,andacryogenically-cooledindiumantimonidedetector.MeasurementswereperformedinasinglepassthroughFC1(theopticalaxiswasperpendicularto
9
thedirectionofgasflow).TheCCTBAvolumetricflowrateatSTP(F)wascalculatedusing
thebubblerequation2,7-11,33
(1)
FSTP=FSTPPCFCT1BA
CCTBAAr(P?PCFCT1BA)
whereFTPisthecarriergasvolumetricflowrate(STP),PCFCT1BAistheCCTBApartialpressureatFC1,andPisthetotalpressureatFC1.PCFCT1BAwasdeterminedfromtheabsorbancemeasurements35andPwasobtainedfromPCDG2bycalculatingthepressuredropthatexistsbetweenCDG2andFC1usingtheHagen-Poiseuilleequation.34,35
2.4.CalculatingCCTBAMassDelivered
ThecalculatedCCTBAmassdeliveredperinjection(mj)isdescribedby33,36
m=FBARTSTPtinj=FTPCCTPHArARTSTPtinj=FTP(PtSS?CCTBABA)RTSTPtinj(2)
(PSTPMPHS(PSTPMnPVP(PSTPM
wherePSTPisthestandardpressure,Mistheprecursormolarmass,Risthegasconstant,TSTPistheabsolutestandardtemperature,PCHCSTBA,S,andParetheprecursorpartialpressure,carriergaspartialpressure,andtotalsystempressure,respectively,inthevesselheadspace(P=PCHCSTBA+S),nSistheaveragesourceefficiencyfactor,andPCVCPTBAistheCCTBAvaporpressure.ThetermnSrepresentsthedegreetowhichtheconditionPCHCSTBA~PCVCPTBAisrealizedandisdefinedas36
nS==tinjj0nS(t)dt=tinjj0dt(3)
10
P
wheremisthemeasuredCCTBAmassdeliveredperinjection,andmjisthemassperinjectionfromaperfectlyefficientvesselascalculatedusingEq.(2)withnS=1,nS(t)representsthetime-
dependentinstantaneoussourceefficiency,andPCHCSTBA(t)representsthetime-dependentPCHCSTBA.
ThetotalpressureintheheadspacewasassumedtobetheaverageofPCDG1andthepressureatalocationdownstreamofthelastoutletvalve.Thislocationwas≈18cmfromMVoutand≈6cmfromPVoutforthebubblerandflowovervessel,respectively(≈114.5cmfromCDG2inbothcases).ThepressureattherespectiveoutletlocationwascalculatedbytakingintoaccountthepressuredropbetweenthislocationandCDG2usingtheHagen-Poiseuilleequation.ThepressureincreasefromCDG2tothislocationwas≤10%and≤1%forTV-1andTV-2,respectively.WhentabulatingthePvalues,anaveragevaluewascalculatedoveratimeintervaldeterminedfromtheinflectionpointsofthederivativeofPCDG2,with0.1sand0.175saddedtothestartandsubtractedfromtheendoftheinterval,respectively,toreducetheeffectonthisestimationofpressuretransientsduringvalveswitching.Inthecaseofthebubbler,thehydrostaticpressure,Phydro,wassubtractedfromPCDG1priortocalculatingtheaveragevalue33
Phydro=pCCTBAgl(4)
wherepCCTBAistheCCTBAdensity(assumedtobe1440kg/m3),gistheaccelerationofgravity,andlisthelengthofthediptubebelowtheCCTBAlevel(thereisa2mmdistancebetweenthebottomofthediptubeandbottomofthevessel).Dependingonthemassinthebubbler,theestimatedPhydrovaluerangedfrom127Pato79Pafor200g(themassasreceived)to139g(themassremainingafterthemeasurementsdescribedhere),respectively.Forsimplicity,theaverage
HS
Phydro=103Pawasusedforallestimations.Thismethodofestimatingttlassumesanequalpressuredropacrosseachofthefourvalvesduringinjection.Thishasbeenshowntobea
11
3(4冗kBTmAB)1232HS
reasonableassumptionforatleastoneemptybubblerwithPCDG2必5.2kPa.34However,valve
conductancecanvaryfromvalvetovalvesotherelevanceofthispreviousreportisuncertain.ThevalueofPCVCPTBAisdescribedbytheAntoineequation:
log10PCVCPTBA=AA?BAT(5)
whereTistheabsolutetemperatureandAAandBAareconstantsequalto11.39and3209.3,respectively.28Fromthisexpression,PCVCPTBA=28.8Paat50°C.
2.5.Computationalfluiddynamicssimulations
CFDsimulationsofdeliveryfromtheflowovervesselwereperformedusingCOMSOLMultiphysicsversion6.0,asdescribedpreviouslyforalowvolatilitysolidinanidenticalvesseldesignasutilizedinthisstudy.30Tosimplifythesesimulations,itwasassumedthatthegaspropertieswerethoseofargon(CCTBAwasdilute),thatthepressurewasconstant(givenbyP),thattheonlysourceofCCTBAwasvaporabovetheliquidatthebottomofthevessel,andtheCCTBApartialpressurewasequaltothevaporpressure.Thepropertiesofargonwereobtained
fromREFPROP.37Thebinarydiffusioncoefficient(DAB)wascalculatedfrom38
D=f=dTP
AB16n冗BDD0ttl
(6)
wherekBistheBoltzmannconstant,mAB=2(1mA)+(1mB)?1wheremAandmBarethemolecularmassofmoleculeAandB,nisthenumberdensityofmolecules,σABisthecharacteristiclength,ΩDisthecollisionintegral,andfDisacorrectionterm.Tosimulatem,avalueofd0=3.5×10-5kg·m·s-3·K-3/2(mD)at50°Cwasselected.Usingthisd0value,themassdifferencebetweenm
andmDforfifteeninjectionswithFTP=0.75L/min,tinj=2s,tidle=8s,andintheTV-2flow
12
configurationwas<2%foreachinjectionnumberfourthroughfifteen(seeFig.6andassociateddiscussion).
3.Resultsanddiscussion
Figure2showsthemvaluesasafunctionofinjectionnumberforthebubblerandflowovervesselswithFTP=0.50L/min,tinj=2s,tidle=8s,andintheTV-2flowconfiguration.Alsoshownaredashedanddot-dashedlinesthatrepresentthemjvaluesforthebubblerandflowovervessel,respectively,calculatedwiththenSvaluesindicatedoneachline.Thereisgoodagreementbetweenmandmjasexpected.28Inthecaseofthebubbler,themasscarryoverdecreasesslightlyfromthefirstinjectiontoastablemasscarryoverafteraboutthreeinjections.Thesmalldecreaseinmassforthefirstonetotwoinjectionsisattributedtothetimeittakesforthepressureinthesystemtostabilizefrompulsetopulse(seeFig.3andassociateddiscussion).Onceastablemasscarryoverisobservedafterthefirstonetotwoinjections,themjvaluesareabout3%lowerthanthemvalues,adifferencewhichisattributedtothesimplisticmethodusedtoestimateP(seeSec.2.4).Inthecaseoftheflowovervessel,thereisrelativelypooragreementbetweenmandmjashasbeenobservedpreviouslyforasolidinsuchavesseldesign.29ThenSvaluesrangefromabout0.77forthefirstinjectiontoabout0.44onceastablemasscarryoverhasbeenachievedafterabouttwentytothirtyinjections.Asnotedpreviously,themethodusedtoestimatePresultsinanunderestimationofmjinthecaseofthebubbler.Presumably,thisalsoisthecasefortheflowovervessel.Hence,thecalculatednSvaluesarelikelyoverestimatedbyanamountcorrespondingtothedegreeofunderestimationofmj.Theobserveddecreaseofmasscarryover
13
withinjectionnumberuntilastablemasscarryoverisachievedischaracteristicofaflowovervessel.Thisbehaviorisexplainedasfollows.Priortothefirstinjection,thevesselwassubjected
toa>300sidleduringwhichCCTBAvapordiffusedintothevesselheadspaceuntilPCHCSTBA=PCVCPTBA,themaximumCCTBApartialpressureachievable.ThemvaluedecreasesfromthatofaprecedinginjectionwhentheamountofCCTBAremovedduringaninjectionisgreaterthanthesumoftheamountofCCTBAdiffusingintotheheadspaceduringtheprecedingidle(an8sidleisinsufficienttoresultinPCHCSTBA=PCVCPTBA)plustheamountbeingentrainedintotheflowingcarriergasfromtheprecursorreservoir.AstablemasscarryoverisachievedwhentheamountofCCTBAremovedduringaninjectionequalsthesumoftheamountdiffusingintotheheadspaceplustheamountbeingentrained.Asdescribedinthecaseofthebubbler,pressurestabilizationeffectsledtothefirstonetotwoinjectionsexhibitingahighermthansubsequentinjections.Inthecaseoftheflowovervessel,similareffectsarepresent,butitisdifficulttodifferentiatetheeffectsonmofpressurestabilizationandgasflowdynamics(seeFig.3andassociateddiscussion).However,thepressurestabilizationprocesspresumablyresultsinalesssharpdecreasefromthefirstinjectionthanwouldhavebeenobservedintheabsenceofthiseffect.Becauseoftheseflowcharacteristics,Eq.(2)withaconstantnSvaluedoesnotdescribetheflowovervesselperformanceforallinjections.However,thisequationwithaconstantnSvaluecanadequatelydescribetheperformanceonceastablemasscarryoverisachieved,asillustratedbythedot-dashedlinelabeledwithnS=0.44(avalueobtainedfromtheaveragenSvalueforinjections51to100).
Figure3showsthetime-dependent(a)PCFCTBAand(b)PCDG2valuesforthefirstfiveinjectionsfromthebubblerand(c)PCFCTBAand(d)PCDG2forthefirstteninjectionsfromtheflowovervessel,allwithFTP=0.50°L/min,tinj=2s,tidle=8s,andintheTV-2flowconfiguration
14
(thesameconditionsasforFig.2).Inthecaseofthebubbler,thetime-dependentPCFCTBAprofileisrectangularanddoesnotvarysignificantlywithinjectionnumberwhilePCDG2increasesslightlyoverthefirsttwotothreeinjections.ThesetrendsareconsistentwiththoseobservedinFig.2:themvalueisrelativelystableexceptforthefirsttwoinjectionsduringwhichthesystempressureisincreasing,leadingtoadecreaseinmatconstantPCHCSTBAasexpectedfromEq.(2).Inthecaseoftheflowovervessel,thetime-dependentPCFCTBAprofileisalsorectangularbutdecreaseswithinjectionnumberformorethanthefirstteninjections.Inaddition,thetime-dependenceofPCFCTBA
isdifferentforfirstinjectioncomparedtotheotherfour,thetime-dependenceofwhicharesimilar.ThePCDG2valueincreasesoveronlythefirstfourinjections.TheseresultsareconsistentwiththeexplanationofthetrendsobservedinFig.2:pressurestabilizationmayimpactthemvalueforthefirstonetofourinjectionsbutthemvaluecontinuestodecreasebeyondfourinjectionsduetothegasdynamicsintheflowovervessel,drivenbythecontinueddecreaseofCCTBApartialpressure.ThedifferenceinPCFCTBAforthefirstinjectioncomparedtothatofsubsequentinjectionsisattributedtopressurestabilizationinthevalvemanifoldafteralongidle.Presumably,thiseffectisnotobservedforthebubblerbecausethevolumeassociatedwiththebubblervalvemanifoldissmallerthanthatoftheflowovervessel(seeFig.1).
ThedependenceofthemasscarryoverontinjisdepictedinFig.4whichshowsthemvalueasafunctionoftinjfortheTV-1andTV-2flowconfigurationswiththebubblerforFTP=(a)0.25L/min,(b)0.50L/min,and(c)0.75L/minandtheflowovervesselforFTP=(d)0.25L/min,(e)0.50L/min,and(f)0.75L/min.Foreachinjection,tidle=4×tinj.Thelargermvaluesatthetopoftheverticalstackcorrespondtoearlierinjectionswhilethegroupingofsymbolsatthe
15
smallermvaluescorrespondstoastateofstablemasscarryover.Thedashedanddot-dashedlinesrepresentthemjvaluesforTV-1andTV-2,respectively,calculatedwiththenSvaluesindicatedoneachline.Inthecaseofthebubbler[Fig.4(a)to4(c)],themvalueincreaseswithincreasingtinjandFTPanddecreasingPCDG2.AlloftheserelationshipsaredescribedwellbyEq.(2)withnSequaltounity.AswasthecaseforthedatashowninFig.2,themjvaluesareslightlylowerthanthemvaluesforsomeconditions,particularlyatlowerPCDG2.ThisunderestimationagainisattributedtothesimplisticmethodusedtoestimatePThedifferencebetweenthemandmjvaluesisgreaterintheTV-1configurationcomparedtotheTV-2configurationbecausethepressuredropacrossthevalvemanifoldisgreaterintheformer,resultinginapoorerestimateofPInthecaseoftheflowovervessel[Fig.4(d)to4(f)],forthefirstinjectionthemvalueincreaseswithincreasingtinjandFTPanddecreasingPCDG2.Onceastablemasscarryoverisachieved,themvalueincreaseswithincreasingtinj,however,themvalueincreasesrelativelylittlewithdecreasingPCDG2(intherangeinvestigatedhere)anddecreasesslightlywithincreasingFTP(incontrasttothebehaviorobservedwiththebubbler).TherelativelyweakdependenceofmonpressureandtheinversedependenceonflowratearecontrarytothedependenceexpectedbasedonEq.(2).Thesecharacteristicsareattributedtotheflowdynamicsoftheflowovervessel.ThemvaluesatastablemasscarryoverarereasonablywelldescribedbyEq.(2)withconstantnSobtainedfromtheaveragenSvalueforinjections51to100oftherespectiverun(aswasillustratedinFig.2).Fortheflowovervessel,therespectivenSvaluedecreaseswithdecreasingPCDG2andincreasingF
16
ThedependenceofthemasscarryoverontidleisillustratedinFig.5whichshowsthemvalueasafunctionoftidlefortinj=0.5sintheTV-1andTV-2flowconfigurationswiththebubblerforFTP=(a)0.25L/min,(b)0.50L/min,and(c)0.75L/minandtheflowovervesselforFTP=(d)0.25L/min,(e)0.50L/min,and(f)0.75L/min.Thedashedanddot-dashedlinesrepresentthemjvaluesforTV-1andTV-2,respectively,calculatedwiththeindicatednSvalues.Inthecaseofthebubbler[Fig.5(a)to5(c)],themassdeliveredisindependentoftidle,indicatingthattheheadspace
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版信息服務(wù)合同3篇
- 2024年訂購(gòu)合同:新鮮大蒜供需協(xié)議
- 2025年度標(biāo)前城市更新項(xiàng)目合作協(xié)議3篇
- 2024版待崗協(xié)議書模板
- 二手房買賣中介代理協(xié)議:2024年定制版版B版
- 2024版離婚協(xié)議書去哪補(bǔ)充
- 2024版企業(yè)員工勞動(dòng)爭(zhēng)議調(diào)解與仲裁協(xié)議3篇
- 2025年度物聯(lián)網(wǎng)平臺(tái)建設(shè)與運(yùn)營(yíng)管理合同3篇
- 二零二五年度工業(yè)地產(chǎn)廠房租賃合同:產(chǎn)業(yè)升級(jí)示范文本6篇
- 2024股權(quán)轉(zhuǎn)讓中的交易方式協(xié)議
- 分期還款協(xié)議書
- 小區(qū)住戶手冊(cè)范本
- ??低?視頻監(jiān)控原理培訓(xùn)教材課件
- 《鄭伯克段于鄢》-完整版課件
- 土壤肥料全套課件
- 畢業(yè)生延期畢業(yè)申請(qǐng)表
- 學(xué)校6S管理制度
- 肽的健康作用及應(yīng)用課件
- T.C--M-ONE效果器使用手冊(cè)
- 8小時(shí)等效A聲級(jí)計(jì)算工具
- 人教版七年級(jí)下冊(cè)數(shù)學(xué)計(jì)算題300道
評(píng)論
0/150
提交評(píng)論