河北省邯鄲市雞澤縣2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
河北省邯鄲市雞澤縣2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
河北省邯鄲市雞澤縣2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
河北省邯鄲市雞澤縣2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
河北省邯鄲市雞澤縣2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且2.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°3.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.4.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.5.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.246.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a77.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-28.如圖,田亮同學(xué)用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學(xué)知識是()A.垂線段最短 B.經(jīng)過一點有無數(shù)條直線C.兩點之間,線段最短 D.經(jīng)過兩點,有且僅有一條直線9.|﹣3|的值是()A.3 B. C.﹣3 D.﹣10.下列圖案是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.等腰△ABC的底邊BC=8cm,腰長AB=5cm,一動點P在底邊上從點B開始向點C以0.25cm/秒的速度運動,當(dāng)點P運動到PA與腰垂直的位置時,點P運動的時間應(yīng)為_____秒.12.若am=5,an=6,則am+n=________.13.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現(xiàn)將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.14.小青在八年級上學(xué)期的數(shù)學(xué)成績?nèi)缦卤硭荆綍r測驗期中考試期末考試成績869081如果學(xué)期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學(xué)期的總評成績是_____分.15.如圖,點A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負半軸上,CD=k,已知AB=2AC,E是AB的中點,且△BCE的面積是△ADE的面積的2倍,則k的值是______.16.若a+b=3,ab=2,則a2+b2=_____.17.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形擺放在平面直角坐標(biāo)系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.19.(5分)已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.(1)求證:B是EC的中點;(2)分別延長CD、EA相交于點F,若AC2=DC?EC,求證:AD:AF=AC:FC.20.(8分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當(dāng)a=6時,求圖案中陰影部分正六邊形的面積.21.(10分)益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運往益陽的運輸成本大大降低.馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運往益陽某加工廠,每次運輸A,B產(chǎn)品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產(chǎn)品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現(xiàn)在的運費3020(1)求每次運輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件;(2)由于該農(nóng)戶誠實守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運費最少需要多少元.22.(10分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)23.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣12x+3的圖象與反比例函數(shù)y=kx(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點.求反比例函數(shù)的表達式;點C是第一象限內(nèi)一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點24.(14分)為了提高學(xué)生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)椋ǚ郑?,將其按分?shù)段分為五組,繪制出以下不完整表格:組別

成績(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據(jù)表格提供的信息,解答以下問題:(1)本次決賽共有名學(xué)生參加;(2)直接寫出表中a=,b=;(3)請補全下面相應(yīng)的頻數(shù)分布直方圖;(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)二次根式和分式有意義的條件計算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點睛】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.2、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.3、C【解析】

這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.4、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是記住扇形的面積公式:S=.5、A【解析】

解:如圖,設(shè)對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質(zhì).6、D【解析】

直接利用完全平方公式以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A.

(a+b)2=a2+b2+2ab,故此選項錯誤;B.

3a+4a=7a,故此選項錯誤;C.

(ab)3=a3b3,故此選項錯誤;D.

a2a5=a7,正確。故選:D.【點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數(shù)冪的乘法,完全平方公式,解題的關(guān)鍵是掌握它們的概念進行求解.7、D【解析】

把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標(biāo)互為相反數(shù),而平移時,頂點的縱坐標(biāo)不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標(biāo)是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標(biāo)互為相反數(shù).∵左、右平移時,頂點的縱坐標(biāo)不變,∴平移后的頂點坐標(biāo)為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標(biāo)不變;左右平移時,點的縱坐標(biāo)不變.同時考查了二次函數(shù)的性質(zhì),正比例函數(shù)y=﹣x的圖象上點的坐標(biāo)特征.8、C【解析】

用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,∴線段AB的長小于點A繞點C到B的長度,∴能正確解釋這一現(xiàn)象的數(shù)學(xué)知識是兩點之間,線段最短,故選C.【點睛】根據(jù)“用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小”得到線段AB的長小于點A繞點C到B的長度,從而確定答案.本題考查了線段的性質(zhì),能夠正確的理解題意是解答本題的關(guān)鍵,屬于基礎(chǔ)知識,比較簡單.9、A【解析】分析:根據(jù)絕對值的定義回答即可.詳解:負數(shù)的絕對值等于它的相反數(shù),故選A.點睛:考查絕對值,非負數(shù)的絕對值等于它本身,負數(shù)的絕對值等于它的相反數(shù).10、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、7秒或25秒.【解析】考點:勾股定理;等腰三角形的性質(zhì).專題:動點型;分類討論.分析:根據(jù)等腰三角形三線合一性質(zhì)可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.解答:解:如圖,作AD⊥BC,交BC于點D,∵BC=8cm,∴BD=CD=12∴AD=AB分兩種情況:當(dāng)點P運動t秒后有PA⊥AC時,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,當(dāng)點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴點P運動的時間為7秒或25秒.點評:本題利用了等腰三角形的性質(zhì)和勾股定理求解.12、1.【解析】

根據(jù)同底數(shù)冪乘法性質(zhì)am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數(shù)冪乘法計算,屬于簡單題,熟悉法則是解題關(guān)鍵.13、1≤x≤1【解析】

此題需要運用極端原理求解;①BP最小時,F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當(dāng)F、D重合時,BP的值最??;根據(jù)折疊的性質(zhì)知:AF=PF=5;在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;∴BP=xmin=1;②當(dāng)E、B重合時,BP的值最大;由折疊的性質(zhì)可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關(guān)鍵.14、84.2【解析】小青該學(xué)期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.15、【解析】試題解析:過點B作直線AC的垂線交直線AC于點F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點A的坐標(biāo)為(,3),點B的坐標(biāo)為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、三角形的面積公式以及勾股定理.構(gòu)造直角三角形利用勾股定理巧妙得出k值是解題的關(guān)鍵.16、1【解析】

根據(jù)a2+b2=(a+b)2-2ab,代入計算即可.【詳解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案為:1.【點睛】本題考查對完全平方公式的變形應(yīng)用能力,要熟記有關(guān)完全平方的幾個變形公式.17、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當(dāng)DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當(dāng)AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點P在線段BD上是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(2);(3)【解析】

(1)由條件可求得A、C的坐標(biāo),利用待定系數(shù)法可求得直線AC的表達式;(2)結(jié)合圖形,當(dāng)直線平移到過C、A時與矩形有一個公共點,則可求得b的取值范圍;(3)由題意可知直線l過(0,10),結(jié)合圖象可知當(dāng)直線過B點時與矩形有一個公共點,結(jié)合圖象可求得k的取值范圍.【詳解】解:(1),設(shè)直線表達式為,,解得直線表達式為;(2)直線可以看到是由直線平移得到,當(dāng)直線過時,直線與矩形有一個公共點,如圖1,當(dāng)過點時,代入可得,解得.當(dāng)過點時,可得直線與矩形有公共點時,的取值范圍為;(3),直線過,且,如圖2,直線繞點旋轉(zhuǎn),當(dāng)直線過點時,與矩形有一個公共點,逆時針旋轉(zhuǎn)到與軸重合時與矩形有公共點,當(dāng)過點時,代入可得,解得直線:與矩形沒有公共點時的取值范圍為【點睛】本題為一次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、直線的平移、旋轉(zhuǎn)及數(shù)形結(jié)合思想等知識.在(1)中利用待定系數(shù)法是解題的關(guān)鍵,在(2)、(3)中確定出直線與矩形OABC有一個公共點的位置是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.19、(1)詳見解析;(2)詳見解析.【解析】

(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠BCA=∠BAC,進而可得出BA=BC,根據(jù)等角的余角相等結(jié)合等角對等邊,即可得出AB=BE,進而可得出BE=BA=BC,此題得證;(2)根據(jù)AC2=DC?EC結(jié)合∠ACD=∠ECA可得出△ACD∽△ECA,根據(jù)相似三角形的性質(zhì)可得出∠ADC=∠EAC=90°,進而可得出∠FDA=∠FAC=90°,結(jié)合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質(zhì)可證出AD:AF=AC:FC.【詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點;(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【點睛】本題考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用等角對等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.20、(1)如圖所示見解析,(2)當(dāng)半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.21、(1)每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有10件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有30件,(2)產(chǎn)品件數(shù)增加后,每次運費最少需要1120元.【解析】

(1)設(shè)每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有x件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有y件,根據(jù)表中的數(shù)量關(guān)系列出關(guān)于x和y的二元一次方程組,解之即可,(2)設(shè)增加m件A產(chǎn)品,則增加了(8-m)件B產(chǎn)品,設(shè)增加供貨量后得運費為W元,根據(jù)(1)的結(jié)果結(jié)合圖表列出W關(guān)于m的一次函數(shù),再根據(jù)“總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍”,列出關(guān)于m的一元一次不等式,求出m的取值范圍,再根據(jù)一次函數(shù)的增減性即可得到答案.【詳解】解:(1)設(shè)每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有x件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有y件,根據(jù)題意得:,解得:,答:每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有10件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有30件,(2)設(shè)增加m件A產(chǎn)品,則增加了(8-m)件B產(chǎn)品,設(shè)增加供貨量后得運費為W元,增加供貨量后A產(chǎn)品的數(shù)量為(10+m)件,B產(chǎn)品的數(shù)量為30+(8-m)=(38-m)件,根據(jù)題意得:W=30(10+m)+20(38-m)=10m+1060,由題意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函數(shù)W隨m的增大而增大∴當(dāng)m=6時,W最小=1120,答:產(chǎn)品件數(shù)增加后,每次運費最少需要1120元.【點睛】本題考查了一次函數(shù)的應(yīng)用,二元一次方程組的應(yīng)用和一元一次不等式得應(yīng)用,解題的關(guān)鍵:(1)正確根據(jù)等量關(guān)系列出二元一次方程組,(2)根據(jù)數(shù)量關(guān)系列出一次函數(shù)和不等式,再利用一次函數(shù)的增減性求最值.22、(1)①;②;(2)150+475+475.【解析】

(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,F(xiàn)D'即為所求最大值,再求得

△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,F(xiàn)D’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論