新課標小學(xué)數(shù)學(xué)培優(yōu)競賽教程_第1頁
新課標小學(xué)數(shù)學(xué)培優(yōu)競賽教程_第2頁
新課標小學(xué)數(shù)學(xué)培優(yōu)競賽教程_第3頁
新課標小學(xué)數(shù)學(xué)培優(yōu)競賽教程_第4頁
新課標小學(xué)數(shù)學(xué)培優(yōu)競賽教程_第5頁
已閱讀5頁,還剩85頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——新課標小學(xué)數(shù)學(xué)培優(yōu)競賽教程新課程小學(xué)

《數(shù)學(xué)培優(yōu)、競賽全程跟蹤講·學(xué)·練·考》

五年級

精練分冊

主編:楊躍

目錄

上學(xué)期

第一講小數(shù)的巧算其次講牛吃草問題第三講多邊形的面積

3.1面積計算3.2等積變形3.3列方程求面積第四講圖形的切拼

第五講列方程解應(yīng)用題〈一〉第六講規(guī)律推理

1

第七講抽屜原理

下學(xué)期

第八講數(shù)的整除

第九講約數(shù)、倍數(shù)和最大公約數(shù)、最小公倍數(shù)

9.1約數(shù)和倍數(shù)

9.2最大公約數(shù)和最小公倍數(shù)第十講質(zhì)數(shù)、合數(shù)和分解質(zhì)因數(shù)

10.1質(zhì)數(shù)和合數(shù)10.2分解質(zhì)因數(shù)第十一講奇數(shù)與偶數(shù)第十二講帶余除法

12.1一般余數(shù)問題12.2同余數(shù)問題第十三講完全平方數(shù)第十四講分數(shù)

14.1分數(shù)的意義和性質(zhì)14.2分數(shù)與小數(shù)的互化14.3分數(shù)大小的比較第十五講發(fā)現(xiàn)規(guī)律解數(shù)

上學(xué)期

第一講小數(shù)的巧算

[同步穩(wěn)定演練]

1、計算:7.93+(2.8-1.93)。2、計算:7736-473+73。

3、計算:3.71-2.74+4.7+5.29-0.26+6.3。4、計算:34×25×6。5、計算:8.25×18。6、計算:8.4÷5÷8。7、計算:49000÷125。

8、計算:(5.25+0.125+5.75)×8。9、計算下面各題

⑴2.56-(1.65-0.97)⑵4.74+(1.26-0.77)⑶5.47-(1.47+0.84)⑷9.9×9.9+0.99⑸1.25×2.5×3200

2

10、計算:75×4.7+159×2.511、計算:4.25×5.24+1.52×2.5112、計算:7142.85÷3.7÷2.7×1.7×0.713、計算:1.25×17.6+36÷0.8+2.64×12.5

14、計算:176.2+348.3+42.47+252.5+382.2315、計算:(6.4×7.5×8.1)÷(3.2×2.5×2.7)16、計算:15.37×7.88-9.37×7.38+1.537×21.2-93.7×0.262[能力拓展平臺]

1、C.DE×A.B=A.CDE是用字母表示的一個小數(shù)乘法算式,題中每一個字母表示一個數(shù)字,假使A.CDE<C.DE,求A.B所表示的數(shù)。

2、計算:10-9-0.9-0.09-0.009-0.0009-0.000093、計算:15.37×7.88-9.37×7.88-15.37×2.12+9.37×2.124、計算:4.65×32+2.5×46.5+0.465×4305、計算:4.05+4.08+4.11+…+7.026、不計算,在□中填入“>〞“<〞或“=〞:

⑴0.3÷0.03×0.003÷0.0003□10÷100×1000÷1000⑵32.7÷0.25+2.51×10□32.7×4+2.51÷0.1⑶282.4÷0.999□282.4×0.999

7、計算:(0.12+0.22+0.32+0.42)2÷(0.13+0.23+0.33+0.43)38、計算:⑴2.89×6.37+4.63×2.89⑵327×2.8+17.3×289、計算:0.625??0.?625??0.?625??8????8?2?2????2??????????????8???10個0.6259個88個2[全講綜合訓(xùn)練]

1、計算:⑴14.529+(2.471-3);⑵38.68-(4.7-2.32)2、計算:44.8-21.7-24.7+16.43、計算:131-68-85+534、計算:34.5×8.23-34.5+2.77×34.55、計算:7.9×25+33×2.56、計算:23×(63÷23÷4)÷217、計算:18.3÷4+5.3×2.5+7.13×7.58、計算:243587×1111

9、計算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1910、計算:(8.4×2.5+9.7)÷(1.05÷1.5+8.4÷0.28)11、計算:1.25×67.875+125×6.7875+1250×0.05337512、計算:172.4×6.2+2724×0.3813、計算:0.739×(48.8+20.3+51.2+4.7)×8.88÷73914、計算:6.03+6.06+6.09+6.12+…+7.9515、計算:41.2×8.1+11×9.25+537×0.1916、(全奧賽題,2023)計算⑴3.51×49+35.1×5.1+49×51

⑵784070+78407.1+7840.72+784.073+78.40717、(全國我愛少年夏令營計算題競賽,2023)⑴7-4.36+5.378⑵3.5×[6.8-(1.6+3.6÷0.9)]÷8418、(全國奧賽題,2023)計算3.6×42.3×3.75-12.5×0.423×28

19(我愛數(shù)學(xué)少年夏令營計算競賽,2023)⑴0.76+29.44×1.6

⑵0.1+0.3+…+0.9+0.11+0.13+…+0.97+0.99

3

其次講牛吃草草問題

[同步穩(wěn)定演練]

1、牧場上長滿牧草,可供10頭牛吃3天,可供5頭牛吃8天,假使牧草每天勻速生長,那么可供多少頭牛吃2天?

2、有一水池,池底有泉水不斷涌出,要想把水池的水抽干,10臺抽水機需要抽8小時,8臺抽水機需要抽12小時,假使用6臺抽水機,需要多少小時?

3、24頭牛6天可將一片牧草吃完;21頭牛8天可將這片牧草吃完;假使每天草的增長量相等,要使這片牧草永遠吃不完,至多放多少頭吃這片牧草?

4、一只船有一個漏洞,水以均勻的速度進入船內(nèi),發(fā)現(xiàn)漏洞時已進入一些水,假使用12個人舀水,3小時可以舀完;假使只有5個人舀水,要10小時才能舀完,現(xiàn)在要2小時舀完,需要多少人?

5、一水庫原有水量一定,河水每天均勻入庫,5臺抽水機連續(xù)20天可抽干,6臺同樣的抽水機連續(xù)15天可抽干,若要求6天抽干需要多少臺同樣的抽水機?

6、有一酒槽,每日泄漏等量的酒,如讓6人飲,則4天喝完,如讓4人飲,則5天喝完,若每人的飲酒量一致,問每天的漏酒量為多少?

7、一個水池安裝有排水量相等的排水管若干根,一根進水管不斷地往池里放水,平均每分鐘進水量相等,假使開放三根排水管,45分鐘可把池中水放完,假使開放五根排水管,25分鐘可把池中水排完,假使開放八根排水管,幾分鐘排完水池中的水?

8、現(xiàn)欲將一池塘水全部抽干,但同時有水勻速流入池塘,若用8臺抽水機10天可以抽干;用6臺抽水機20天抽干,問:若要5天抽干水,需多少臺同樣抽水機來抽水?[能力拓展平臺]

1、一個大水坑,每分鐘從四周流掉(四壁滲透)一定數(shù)量的水,假使用5臺水泵,5小時就能抽干水坑的水;假使用10臺水泵,3小時就能抽干水坑的水,現(xiàn)在要1小時抽干水坑的水,問要用多少臺水泵?

2、畫展9點開門,但早有人排隊等候入場,從第一個觀眾來到時起,每分鐘來的觀眾人數(shù)一樣多,假使開了3個入場口,9點9分就不再有人排隊,假使開5個入場口,9點5分就沒人排隊,問第一個觀眾到達的時間是8點幾分?

3、甲從A地出發(fā)行了一段時間后,乙、丙、丁三人才同時從A點出發(fā)沿同一條路追;甲、乙、丙、丁三人分別用3小時、5小時、6小時追上甲,已知乙每小時行18千米,丙每小時行16千米,那么丁每小時行多少千米?

4、由于天氣逐漸冷起來,牧場上的草不僅不增加,反而以固定的速度在減少,已知某地草地上的草可供20頭牛吃5天或可供15頭牛吃6天,照此計算可供多少頭牛吃10天?

5、兩只蝸牛由于耐不住陽光的照射,從井頂逃向井底,白天往下爬,兩只蝸牛白天爬

4

行的速度是不同的,一只每天爬20分米,另一只爬15分米,黑夜里往下滑,兩只蝸?;械乃俣榷际且恢碌?,結(jié)果一只蝸牛恰好用5個晝夜到達井底,另一只蝸牛恰好用6個晝夜到達井底,求井深。

6、經(jīng)測算,地球上的資源可供100億人生活100年或可供80億人生活300年,假設(shè)地球每年新生成的資源是一定的,為了使資源不致減少,地球上最多生活多少人?

7、自動扶梯以均勻速度往上行駛著,兩位性急的孩子要從扶梯上梯,已知男孩每分鐘走20級梯級,女孩每分鐘走15級梯級,結(jié)果男孩用了5分鐘到達梯頂。女孩用了6分鐘到達梯頂,問扶梯共有多少級?

8、哥哥沿著向上移動的自動扶梯從頂向下走終究,共走了100級,一致的時間內(nèi),妹妹沿著自動扶梯從底向上走到頂,共走了50級,若哥哥單位時間內(nèi)走的級數(shù)是妹妹的2倍,那么當(dāng)自動扶梯靜止時,自動扶梯能看到的部分有多少級?[全講綜合訓(xùn)練]

1、某游樂場在開門前400人排隊等候,開門后每分鐘來的人數(shù)是固定的,一個入口每分鐘可以進10個游客,假使開放4個入口,20分鐘就沒有人排隊,現(xiàn)在開放6個入口,那么開門后多少分鐘就沒有人排隊?

2、早晨6點,某火車站進口處已有945名旅客開始檢票進站,此時,每分鐘還有若干人前來進口處準備進站,這樣,假使設(shè)立4個檢票口,15分鐘可以放完旅客,假使設(shè)立8個檢票口,7分鐘可以放完旅客,現(xiàn)在要求5分鐘放完所有旅客,需設(shè)立幾個檢票口?

3、某游樂場在開門前已經(jīng)有100個人排隊等待,開門后每分鐘來的游人數(shù)是一致的,一個入口處每分鐘放入10名游客,假使開放2個入口處,20分鐘后就沒有人排隊,現(xiàn)在開放4個入口處,那么開門后多少分鐘就沒人排隊了?

4、12頭牛28天可以吃完10公畝牧場上全部牧草,21頭牛63天可以吃完30公畝牧場上全部牧草,多少頭牛126天可以吃完72公畝牧場上全部牧草(每公畝牧揚上原有草量相等,且每公畝牧場上每天生長草量相等)?

5、有3個牧場長滿草,第一牧場33公畝,可供22頭牛吃54天,其次牧場28公畝,可供17頭牛吃84天,第三牧場40公畝,可供多少頭牛吃24天(每塊地每公畝草量一致而且都是勻速生長)?

6、倉庫里原有一批存貨,以后繼續(xù)有車運貨進倉,且每天運進的貨一樣多,用同樣的汽車運貨出倉,假使每天用4輛汽車,則9天恰好運完;假使每天用5輛汽車,則6天恰好運完,倉庫里原有的貨若用1輛汽車運則需要多少天運完?

7、一個水池,底部有一個常開的排水管,上部安有若干個同樣粗細的進水管,開啟2個進水管15小時可以注滿,若開啟4個進水管5小時可以注滿?,F(xiàn)需要2小時將水池注滿,那么至少要開啟幾個進水管?

8、某棉紡廠倉庫,可儲存全廠45天的用棉量,若用1輛大卡車往空倉內(nèi)運棉,則除了供應(yīng)車間生產(chǎn)外,5天可將倉庫裝滿;假使用小卡車往空倉內(nèi)運棉,除了供應(yīng)車間生產(chǎn)外,9天可將倉庫裝滿。假使用1輛大卡車與1輛小卡車同時運棉,需幾天可將倉庫裝滿?

9、甲、乙、丙三輛車同時從同一地點出發(fā)。沿同一馬路追趕前面的一個行人,為三輛車分別用6分鐘,10分鐘,12分鐘追上這個行人,已知甲車每小時行24千米,乙車每小時行20千米,則兩車每小時行多少千米?

5

第三講多邊形的面積

3.1面積的計算[同步穩(wěn)定演練]

1、求下圖中每個小圖形的陰影部分的面積(單位:厘米)

第1題[能力拓展平臺]

1、已知三角形ABC的周長是20厘米,三角形內(nèi)一點到三角形三條邊的距離都是3厘米,求三角形的面積。

第1題2、如圖,ABCG是4×7的長方形,DEFG是2×10的長方形,那么三角形BCM的面積與三角形DEM的面積之差是多少?(單位:厘米)

6第2題

3、求陰影部分的面積(單位:厘米)

第3題

4、長方形ABCD的邊上有二點E、F、AF、BE、BE把長方形分成若干塊,其中三個小塊的面積標注在圖上,求陰影部分面積。

第4題

5、(第五屆華杯賽試題)涂陰影部分的小正六角星形面積是16平方厘米,問大正六角星的面積是多少平方厘米

第5題3.2等積變形[同步穩(wěn)定演練]

1、如下圖,已知矩形ABCD中,BE=少?

1EC,則△ABE和△ABC的面積之比是多27第1題

2、如下圖,梯形ABCD中共有8個三角形,其中,面積相等的三角形有多少對?

第2題

3、如圖,三角形ABC的面積是18平方厘米,BD=2DC,AE=EC,則三角形BDE的面積是多少平方厘米?

第3題

4、如圖已知BC=6BD,AB=5BE,三角形BDE的面積是1,則三角形ABC的面積是多少?

第4題5、如圖ABCD是平行四邊形,AE=積是多少倍?

2AB,則梯形EBCD的面積是三角形AED的面38

第5題

6、如下圖,三角形ABC中,BD=DC,ED=2AE,BF=FD,三角形ABC的面積是1,三角形DFE的面積是多少?

第6題[能力拓展平臺]

1、將任意一個三角形四等分,請你畫出三種分法。

2、如圖E、F分別為平行四邊形ABCD兩條鄰邊的中點,若平行四邊行的面積是1,則圖中面積為

1的三角形有多少個。4第2題

3、在三角形ABC(如圖)中,AD=DB,BE=EC,三角形FEC的面積是5平方厘米。則三角形ABC的面積是多少平方厘米?

第3題

4、在圖中,BE=EF=FC,GA=AH=HC,已知三角形ABC的面積是6平方厘米,則三角

9

形GEC的面積是多少平方厘米?

5、(上海市競賽題,1996)圖8-18中,正方形ABCD的邊長為12,P是AB邊上任意一點,M、N、I、H分別是邊BC、AD的三等分點,E、F、G、C、D的四等分點,求圖中陰影部分面積。

第5題

6、正三角形ABC的邊長為12厘米,BD、DE、EF、FG四條線段把它的面積5等分,求AF、FD、DC、AG、GE、EB的長。

第6題

7、(第三屆華杯賽試題)圖中的正方形被分成9個一致的小正方形,它們一共有16個頂點(共同的頂點算一個),以其中不在一條直線上的三個點為頂點,可以構(gòu)成三角形,在這些三角形中,與陰影三角形有同樣大小面積有多少個?

第7題

8、把平行四邊形ABCD的邊BC延長一倍至E,如圖假使三角形DCE的面積是18平方厘米,則三角形BEF的面積是多少平方厘米?

10

第9題

9、如圖,已知三角形ABC的面積為1,BE=3AB,CD=2BC,則三角形BDE的面積是多少?

第9題

10、如圖把三角形ABC的BA延長至D,使BA=AD;延長AC至E,使CE=2AC。延長CB至F,使BF=3CB,若已知三角形ABC的面積是1,則三角形DEF面積是多少?

第10題3.3列方程求面積[同步穩(wěn)定演練]

1、一塊長方形鐵皮,從長邊減去8厘米,從短邊減去4厘米后,得到的正方形面積比原來的長方形面積少了116平方厘米,則原長方形鐵皮的面積是多少平方厘米?

2、如圖梯形ABCD的面積是45平方厘米,下底BC長9厘米,高是6厘米,且三角形AOD的面積是6平方厘米,則三角形BOC的面積是多少平方厘米?

第2題

11

3、如圖,已知長方形ABCD的面積是36平方厘米,三角形ABE的面積是6平方厘米,三角形AFD的面積是9平方厘米,求三角形AFE的面積。

第3題

4、如圖,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米,又三角形ABF、三角形BCE和四邊形BEDF的面積相等,求三角形DEF的面積。

第4題[能力拓展平臺]

1、試求圖中△ABC的面積(每個小三角形中注的數(shù)字表示該小三角形的面積)

第1題

2、如圖將一三角形紙片沿虛線折疊后得到的圖形面積是原三角形面積的部分的面積是4平方厘米,則原三角形的面積是多少平方厘米?

23,已知陰影第2題

3、如圖已知四邊形ABCD是直角梯形,上底AD長8厘米,下底BC長10厘米,直角腰CD長6厘米,E是AD的中點,F(xiàn)是BC上的點,BF=的面積與△CFG的面積相等,求△ABG的面積。

2BC,G為DC上的點,△DEG312

第5題

4、如圖,三角形ABC的面積是12平方厘米,EC=2AE,F(xiàn)是AD中點,則陰影部分的面積是多少平方厘米?

第4題[全講綜合訓(xùn)練]

1、如圖,在平行四邊形ABCD中,DE=EF=FG,BG=GD,已知三角形GEF的面積是4平方厘米,求平行四邊行的面積。

第1題

2、如圖,在△ABC中,D是AB中點,E是DB中點,F(xiàn)是BC中點,若△ABC的面積是96,那么△AEF的面積是多少?

第2題

3、(哈爾濱市第十屆未來杯賽題)如圖,在平行四邊形ABCD中,EF與AC平行,假使三角形BFC的面積是35平方厘米,那么三角形AEB的面積能不能確定?假使能,它的面積是多少?

13

第3題

4、(哈爾濱市競賽題1998)如圖,平行邊形ABCD的面積是240平方厘米,假使平行四邊行內(nèi)取一點O,連結(jié)AO、BO、CO、DO,三角形AOD與三角形BOC的面積和的加上三角形AOB與三角形DOC的面積和的

1,21,結(jié)果是多少?3第4題

5、如圖,長方形ABCD的面積是120平方厘米,且AD=3AM,AB=4AN,則陰影部分的面積是多少平方厘米?

第5題

6、如圖,ABCD為長方形,AB=10厘米,BC=6厘米,E、F分別為AB、AD中點,且FG=2GE,求陰影部分的面積。

第6題

7.(全國小學(xué)數(shù)學(xué)競賽題)如圖,在三角形ABC中,AD垂直于BC,CE垂直于AB,AD=8厘米,CE=7厘米,AB+BC=21厘米,求三角形ABC的面積。

14

第7題

8.(第一屆祖之杯試題)圖中由9個邊長為1厘米小正方形組成一個大正方形,圖中面積為1/2平方厘米的三角形有多少個?面積最大的三角形面積是多少?

第8題

9.(其次屆新苗杯試題)如圖,AB=4厘米,BC=6厘米,AC=2CD,BE=BD,求三角形ADE的面積。

第9題

10.在三角形ABC,如圖14,AB=3AD,AC=3CG,BE=EF=FC,且三角形FCG的面積為1平方厘米,求陰影部分的面積。

第10題

11.如圖,已知CF=2DE,DE=EA,三角形BCF的面積為2,四邊形BEDF的面積為4,求三角形ABE的面積。

15

第11題

12.(全國奧賽題,1999)如圖,梯形ABCD上底AD長為3厘米,下底BC長為9厘米,而三角形ABO的面積為12平方厘米,求:梯形ABCD的面積。

第12題

13.如圖,在平行四邊形ABCD中,P為三角形ABD內(nèi)的一點,且S△PBC=5,S△PAB=2,求S△PBD。

第13題

14.(上海第四屆小學(xué)數(shù)學(xué)競賽五年級預(yù)賽題)如圖,三角形ABC的面積是30平方厘米,D是BC的中點,AE的長是ED的2倍,求三角形CDE的面積。

第14題

15.(上海市第四屆小學(xué)生數(shù)學(xué)競賽六年級預(yù)賽題)如圖,三角形ABC的面積是180平方厘米,D是BC的中點,AD的長是AE長的3倍,EF的長是BF的長是BF的3倍,求三角形AEF的面積。

16

第15題

16.如圖AD=DE=EC,E是BC中點,G是EC中點,假使三角形ABC的面積是24平方厘米,求陰影部分的面積是多少?

第16題

17.(1992年小學(xué)數(shù)學(xué)奧林匹克試題)如圖,是一個5×5方格紙,小方格的面積是1平方厘米,小方格的頂點稱為格點,請你在圖上選7個格點,要求其中任意3個格點都不在一條直線上,且這7個格點用線段連接后圍成的面積盡可能大,那么,所圍圖形面積是多大?

第17題

18.(第六屆華杯賽決賽題)如圖,正六邊形ABCDEF的面積是54,AP=2PF,CQ=2BQ,求陰影四邊形CEPQ的面積。

第18題

19.(第九屆XX省初中數(shù)學(xué)競賽)求圖中陰影部分的面積。

17

第19題

20.如圖,三角形ABC的面積為5平方厘米,AE=CE,BD=2DC,求陰影部分的面積。第20題

21.如圖,在梯形ABCD中,AD=2BC,ABCD的面積為66,若E為CD的中點,求△ADE的面積。

第21題

22.如圖,E、F、G、H分別是四邊形ABCD各邊的中點,四邊形XYZU的面積=1,試求四個陰影小三角形面積之和。

第22題

23.(全國奧賽題,2023)兩個形狀和大小都一樣的直角三角形△ABC與△DEF,如圖放置,它們的面積都是2023平方厘米,而每一個三角形直角的頂點都恰好落在另一個直角三角形的斜邊上。這兩個直角三角形的重疊部分是一個長方形那么四邊形ADEC的面積為多少平方厘米?

18

第23題

24.(全奧賽試題,2023)由面積分別為2,3,5,7的四人三角形拼成一個大三角形,如下圖。即已知S△AED=2,S△AEC=5,S△BDF=7,S△BCF=3,那么S△BEF=第24題

25.(我愛數(shù)學(xué)少年夏令營競賽題,2023)如圖,平行四邊形ABCD的面積為30平方厘米,E為AD邊延長線上的一點,EB與DC交于F點,如圖△FBC的面積比△FDE的面積大9平方厘米,且AD=5厘米,那么DE=厘米。

第25題

26.(我愛少年夏令營競賽題,2023)在△ABC中,D為BC的中點,E為AB上一點,且BE=

1AB。已知四邊形BDME的面積是35,那么,三角形ABC的面積是。3第26題

27.(全國奧賽題,2000),P為平行四邊形ABCD外一點,已知三角形PAB與三角形

19

PCD的面積分別為7厘米和3厘米,那么平行四邊形ABCD的面積為平方厘米。

第27題

28.(全國奧賽題,2023)如圖,直角梯形ABCD,四邊形AEGF、MBKN都是正方形,且AE=MB,EP=KC=9,DF=PM=4,則△的面積為。

第28題

第四講圖形的切拼

[同步穩(wěn)定演練]

1、把等腰三角形(如圖)分成8個一模一樣的直角三角形,畫出分割的圖形來。

第1題2、將一個正方形剪成8個小正方形,小正方形有大小不等的三種尺寸。3、將一個4×9的長方形切成兩塊,然后拼成一個正方形。

第3題4、下圖是一塊缺了兩個角的木板,請把它鋸成兩塊,然后拼成一個正方形。

20

第5題5、將地塊30×20的方格紙分成大小、形狀都一致的兩塊,然后拼成一個24×25的長方形。

6、將一個正方形分成相等的4塊,然后用這4塊分別拼成三角形、平行四邊形和梯形。

7、將圖切成大小相等、形狀一致的四個小方塊,拼成一個正方形。

第7題

8、把一個正方形切割成大小相等、形狀一致的四個部分,有多少種切割法,請畫出幾種切割法。

9、把一個正三角形切成面積相等、形狀一致的3塊,有幾種切法?

10、把右圖劃分成形狀、大小完全一致的4塊,而且每塊中有一個字母。

第10題11、如圖將它分成形狀和大小都一致的四塊。

第11題[能力拓展平臺]

1、(京市第七屆迎春杯試題)一個長方形,長19厘米,寬18厘米,假使把這個長方形分割成若干個邊長為整數(shù)的小正方形,那么這些小正方形最少要多少個?

2、(京市第七屆迎春杯試題)把以下二圖分別分成形狀一致面積相等的兩個圖形。

21

第2題3、如下圖在100×70的長方形中,挖去一個10×60的長條(陰影),請把這個圖形分成兩塊,然后拼成一個正方形。

第3題

4、將下圖中的各圖分別切成大小、形狀一致的三塊,使每塊都帶有一個小圓圈“○〞。

第4題

5、下圖是2~9以及0的九個數(shù)字,將每小數(shù)字都分成兩塊,拼成一個正方形。(注:“8〞的高度為20,寬為9,中間空格是4×3的長方形)

第5題

6、把下圖切成三塊拼成一個正方形。

第6題

7、如圖一個直角梯形,請在它的內(nèi)部畫一條直線,把它分成形狀、大小都相等的兩部分。(單位:厘米)

22第7題[全講綜合訓(xùn)練]

1、把一個正六邊形分割成八個形狀一致、面積相等的圖形,應(yīng)如何分?2、將圖切割成5個大小相等的圖形。

第2題3、如圖是一張4×4的方格紙,請在保持每個小方格完整的狀況下,將它分割成大小、形狀完全一致的兩部分。

第3題

4、用4種方法將圖分割成完全一致的兩部分,但要保持每個小方格的完整。

第4題

5、(漢城國際奧賽題,1996)在寬11厘米、長181厘米的長方形中劃分正方形,問至少可以劃分幾個?說明劃分方法(也可以畫圖說明)。

6、(漢城國際奧賽題,1996)如圖等腰梯形底角為60°,下底長是上底長的2倍,試將它分割成大小形狀一致的9個圖形。第6題

7、(漢城國際奧賽題,1996)任給一個三角形,(1)試剪一刀,把它剪成二塊,用這兩塊拼成一個平行四邊形;(2)試剪二刀,把它剪成三塊,用這三塊拼成一個長方形。

8、(福建省競賽題,1998)請在圖中畫出三條線段,把等腰梯形分成四個面積相等,形狀一致的圖形。

23

第8題

9、如圖將它分成八個形狀、大小都一致的圖形。

第9題10用來拼成圖。

第10題

11、(福建省競賽題,1998)如圖,方框外面邊長為5,里面邊長為3,把方框鋸成4塊,拼成一個正方形,問怎樣拼法?

第11題

12、(福建省競賽題,1998)如圖,分別將兩圖形,分成8個大小、形狀一致,面積相等的圖形。

第12題

13、把圖分成形狀、大小都一致的四塊,拼成一個正方形。

第13題14、將圖分成三塊,然后拼成一個正方形。

24

第14題

15、把一邊長為7厘米的大正方形,切割成9個不重疊、不交織的小正方形,且每個小正方形的面積必需是整平方厘米。

16、如圖,把它鋸成3塊再拼成一個正方形。第16題

17、把一個正方形分成20個大小形狀完全一樣的三角形。

18、用方格紙剪成面積是4的圖形,其中形狀只有以下七種,如圖試有其中的四種拼成一個面積是16的正方形。

第18題

19、如圖有長6厘米、寬4厘米的長方形,它的中間有一長為4厘米、寬為2厘米的空槽,請你把它剪成三塊,拼成一個正方形。

第19題

20、試將圖分割成形狀、大小都相等的六小塊,使每塊所含數(shù)字的和都相等。

第20題

21、(1)任給兩個同樣的正方形,試把它們剪開,拼成一個正方形;(2)任給兩個大小不同的正方形,試把它們剪開拼成一個正方形。

25

第五講列方程解應(yīng)用題〈一〉

[同步穩(wěn)定演練]

1、某數(shù)的3倍加8與這個數(shù)的5倍減10相等,這個數(shù)是多少?2、某班有女生25人,比男生的3倍少20人,這個班有多少人?

3、一次數(shù)學(xué)競賽共15道題,每做對一道題得8分,做錯一道題倒扣4分,李小明所有題都做了,但只得72分,他做對了多少道題?

4、全班植100棵樹,其中5個同學(xué)每人分到2棵,其余每人3棵,全班共有多少個同學(xué)?

5、一個畜牧場,每天生產(chǎn)牛奶和羊奶共2346千克,生產(chǎn)的牛奶量是羊奶的5倍,問每天生產(chǎn)羊奶和牛奶各多少千克?

6、兩個車間共有工人68名,假使從第一車間調(diào)6名到其次車間,兩車間人數(shù)就相等,求兩個車間原有人數(shù)。

7、小張期中考試,考了四門功課,語文78分,自然83分,歷史81分,數(shù)學(xué)分數(shù)比四門功課的平均分多7分,數(shù)學(xué)考了多少分?

8、甲、乙兩地相距180千米,一人騎摩托車從乙地同時出發(fā),兩人相向而行,已知摩托車車速是自行車的3倍,問多少小時后兩人相遇?

9、小亮與父親5年后的年齡和為45歲,父親今年年齡恰好是小亮年齡的6倍,小亮6年后年齡為多少?

10、甲袋中球數(shù)是乙袋中球數(shù)的6倍,從甲袋中拿出13個球后等于乙球放入12個球后的球數(shù),那么乙袋中原有球多少個?

11、3年前母親的歲數(shù)是女兒的6倍,今年母親33歲,女兒今年幾歲?

12、A、B兩地相距496千米,甲車從A地開往B地,每小時行32千米,甲車開出半小時后,乙車從B地開往A地,它的速度是甲車的2倍,問乙車開出了幾小時后,兩車相遇?

13、水果店運來的西瓜個數(shù)是白蘭瓜的2倍,假使每天賣白蘭瓜40個,西瓜50個,若干天賣完白蘭瓜時,西瓜還剩360個。水果店運來的西瓜和白蘭瓜共多少個?

14、好馬每天走240千米,劣馬每天走150千米,劣馬先走12天,好馬幾天可以追上劣馬?

15、已知藍球、足球、排球平均每個36元,藍球比排球每個多10元,足球比排球每個

26

多8元,每個足球多少元?

16、有四個數(shù),從中取出三個數(shù)相加,得到四個和分別是22、24、27、20,求這四個數(shù)各是多少?[能力拓展平臺]

1、某工廠三個車間共有180人,其次車間人數(shù)是第一車間人數(shù)的3倍還多1人,第三車間人數(shù)是第一車間人數(shù)的一半少1人,三個車間各有多少人?

2、A、B兩地相距144千米,小李、小張騎車從A地、小王騎車從B地同時出發(fā)相向而行。小李、小張、小王的速度分別是每小時17千米、12.5千米、14.5千米。問經(jīng)過幾小時后,小李正好在小張與小王相距的正中點處?

3、(中南地區(qū)競賽題,1992)幼兒園給表演節(jié)目12個小朋友做衣服,11人的平均布料是85厘米,小軍的個子高,他用了布料比12人的平均數(shù)還多5.5厘米,小軍用布料多少米?

4、(岳陽市競賽題,1992)某校六年級甲、乙兩班共有學(xué)生100名,一次數(shù)學(xué)考試,兩班學(xué)生平均得75.4分,其中甲班學(xué)生平均73分,乙班學(xué)生平均78分,那么甲班比乙班多幾名學(xué)生?

5、哥哥現(xiàn)在的年齡是弟弟當(dāng)年年齡的3倍,哥哥當(dāng)年的年齡與弟弟現(xiàn)在的年齡一致,哥哥與弟弟現(xiàn)在的年齡和為30,問哥哥、弟弟現(xiàn)在多少歲?

6、某旅游團租一輛車外出,租車費由乘車人平均負擔(dān),結(jié)果乘車人數(shù)與每人應(yīng)付車費的元數(shù)相等,后來又增加了10個人,這樣每人應(yīng)付車費比原來減少了8元,這輛車的租車費是多少元?

7、把26張畫片分給甲、乙、丙三人,乙分到的比甲的一半多2張,丙分到的比乙的一半多2張,則甲分到多少張?乙分到多少張?丙分到多少張?

8、一個三位數(shù),三個數(shù)位上的數(shù)字和為13,百位數(shù)字比十位數(shù)字小3,個位數(shù)字是十位數(shù)字的2倍。求這個三位數(shù)。[全講綜合訓(xùn)練]

1、媽媽帶一些錢去買布,買2米布后還剩下1.80元;假使買同樣的布4米則差2.40元,問;媽媽帶了多少錢?

2、第一車間工人人數(shù)是其次車間工人人數(shù)的3倍,假使從第一車間調(diào)20名工人去其次車間,則兩個車間人數(shù)相等,求原來兩個車間各有工人多少名?

3、兩個水池共貯水40噸,甲池注進4噸,乙池放出8噸,甲池水的噸數(shù)與乙池水的噸數(shù)相等,兩個水池原來各貯水多少噸?

4、學(xué)校共買大、小凳子20張,一共付款96元,大凳子每張6元,小凳子每張4元,大、小凳子各買了幾張?

5、甲、乙共有圖書63冊,乙、丙共有圖書77冊,三人中圖書最多的人的書數(shù)是圖書最少的人的書數(shù)的2倍,問:甲、乙、丙三人各有圖書多少冊?

6、(第三屆《小學(xué)生數(shù)學(xué)報》競賽題)王師傅加工1500個零件后,改進技術(shù),使工作效率提高到原來的2.5倍,后來再加工1500個零件時,比改進技術(shù)前少用了18個小時,改進技術(shù)前后每小時各加工多少個零件?

7、(第一屆九章杯競賽題)一次數(shù)學(xué)測驗,六(1)班全班平均91分,男生平均89,女生平均92.5,這個班女生有24人,問:這個班男生有多少人?

8、甲、乙兩人從同一地點出發(fā)去某地,甲比乙早出發(fā)1小時而晚到2小時。甲每小時走4千米,乙每小時走6千米,求出發(fā)點與某地之間的距離。

9、一架飛機在甲、乙兩城之間飛行,無風(fēng)時每小時飛552千米。在一次來回飛行中,飛機順風(fēng)飛行了5.5小時,逆風(fēng)飛行了6小時,問風(fēng)速是每小時多少千米?

10、甲、乙兩牧童,甲對乙說:“把你的羊給我一只,我的羊就是你的2倍。〞乙回復(fù)說:“最好還是把你的羊給我一只,這樣我們的羊就一樣了。〞問這兩個牧童各有幾只羊?

11、甲、乙兩數(shù),甲的2倍比乙大3,甲的3倍比乙的2倍小1,求這兩數(shù)。

12、甲騎自行車從A地到B地,乙騎自行車從B地到A地,甲騎車的速度比乙每小時快2千米。二人在上午8點同時出發(fā),到上午10兩人還相距36千米,到中午12點,兩人

27

又相距36千米。求A、B之間的距離。

13、甲、乙兩地相距20千米,A從甲地去乙地,同時B從乙地去甲地,兩小時后,二人在途中相遇,相遇后A就返回甲地,B依舊向甲地前進。A回到甲地后,B離甲地還有2千米。求A、B兩人的速度。

第六講規(guī)律推理

[同步穩(wěn)定演紅]

1、有一座四層樓(如圖),每層樓有3個窗戶,每個窗戶有4塊玻璃,分別是白色和茶色。假使每個窗戶表示一個數(shù)字,每層樓的三個窗戶從左到右表示一個三位數(shù),四個樓層表示的三位數(shù)分別是612,275,791,362。那么,第三層樓表示的三位數(shù)是多少?

2、在一樁謀殺案中,有兩個犯罪嫌疑人甲和乙,另有四個證人在受到詢問。第一個證人說:“我只知道甲是無罪的。〞其次個證人說:“我只知道乙是無罪的。〞

第三個證人說:“前面兩個人的證詞中至少有一個是真的。〞第四個證人說:“我可以確定第三個證人的證詞是假的。〞

通過調(diào)查研究,已證明第四個證人說了實話,那么兇手是誰?

3、地理課上,老師掛出一張沒有注明省份名稱的中國地圖,其中有五個省分別編上了1~5號,讓大家寫出每個編號是哪一省,A答:2號是陜西,5號是甘肅;B答:2號是湖北,4號是山東;C答:1號是山東,5號是吉林;D答:3號是湖北,4號是吉林;E答:2號是甘肅,3號是陜西,這5名同學(xué)每人都只答對了一個省,并且每個編號只有一個人答對,問1~5號各是哪個?。?/p>

4、在甲、乙、丙三人中,有一位老師,一位工人,一位戰(zhàn)士,知道丙比戰(zhàn)士年齡大,甲和工人不同歲,工人比乙年齡小,請你推斷誰是教師?誰是工人?誰是戰(zhàn)士?

5、在三只盒子里,一只裝有兩個紅球,一只裝有兩個白球,還有一只裝有紅球和白球各一個。現(xiàn)在三只盒子上的標簽全貼錯了。你能只從一只盒子拿出一個球來,就確定這三只盒子里各裝的是什么嗎?

6、甲、乙、丙三位老師分別上語文、數(shù)學(xué)、外語課。(1)甲上課全用漢語;

(2)外語老師是一個學(xué)生的哥哥;(3)丙是女的,比數(shù)學(xué)老師年輕

7、10個好朋友彼此住得很遠,又沒有電話,只能靠寫信互通消息,這個10個人每人知道一件好消息(這10個人各自知道的好消息不同),為讓這10個人都知道所有好消息,他們至少讓郵遞員送幾封信?

8、四所小學(xué),每所小學(xué)有兩支足球隊,這8支球隊進行友情賽、規(guī)定本校的兩支球隊

28

之間不賽,任兩個隊(除同一學(xué)校的兩個隊之處)間賽一場,且只賽一場,比賽進行一階段后(還沒賽完),A學(xué)校第一隊的隊長發(fā)現(xiàn)其他各隊已賽的場數(shù)互不一致,問:這時A學(xué)校其次隊賽了幾場?

9.教室里的椅子壞了,其次天上學(xué)時,老師發(fā)現(xiàn)椅子修好了。經(jīng)了解,椅子是A、B、C三人中的一個人修好的,老師找來這三個人。

A說:“是B做的。〞B說:“不是我做的。〞C說:“不是我做的。〞

經(jīng)調(diào)查,三人中只有一個說了實話,椅子是誰修的呢?

10、某商品編號是一個三位數(shù)?,F(xiàn)有五個三位數(shù):874、765、123、364、925,其中每個數(shù)與商品編號恰好在同一個數(shù)位上有一個一致數(shù)字,商品的編號多少?[能力拓展平臺]

1、今天上午有語文、數(shù)學(xué)、美術(shù)、音樂、體育、自然中的三門課,A,B,C,D,E五人整治是哪三門課。

A說:“確定沒有音樂課。〞B說:“有語文課和體育課。〞

C說:“音樂課和數(shù)學(xué)課只有一門。〞D說:“沒有自然課和美術(shù)課。〞E說:“C、D中有一人說錯了。〞

實際上只有一個說錯了,那么今天上午的三門課分別是什么課?

2、甲、乙、丙、丁四人進行象棋比賽,并決出了一、二、三、四名。已知:(1)甲比乙的名次靠前;(2)丙、丁經(jīng)常一起踢球;

(3)第一、二名在這次比賽中才認識;(4)其次名不會騎車,也不愛踢足球;(5)乙、丁每天一起騎車上班。請判斷他們各自的名次。

3、趙、錢、孫、李四人,一個是教師,一個是售貨員,一個是工人,一個是個體戶,根據(jù)以下條件,判斷這四人的職業(yè)。

⑴趙和錢是鄰居,每天一起騎車上班;⑵趙年齡比孫大;⑶趙在教李打太極拳;⑷教師每天步行上班;

⑸售貨員的鄰居不是個體戶;⑹個體戶和工人互不認識;

⑺個體戶比售貨員和工人年齡都大。

4、A、B、C、D、E五個好朋友曾在一張圓桌上探討過一個繁雜的問題,今天他們又聚在一起,回憶當(dāng)時的情景:

A說:“我坐在B的旁邊。〞

B說:“坐在我左邊的不是C就是D。〞C說:“我挨著D。〞

D說:“C坐在B的右邊。〞

實際上他們都記錯了,你能說出當(dāng)時他們是怎樣坐的嗎?

5、李明、陳昕和孫梅是小學(xué)教師,在語文、數(shù)學(xué)、政治地理、音樂和圖畫六門課中每人教兩門,現(xiàn)在已知:

⑴政治教老師和數(shù)學(xué)老師是鄰居。⑵陳昕最年輕。

⑶李明老師常對地理老師和數(shù)學(xué)老師說他看的書。⑷地理老師比語文老師年紀大。

29

⑸陳昕、音樂老師和語方老師三人常一起看足球比賽。李明、陳昕、孫梅三位老師每人教哪兩門課?

6、某次考試共有6道是非題,要求正確的畫“√〞,錯誤的畫“×〞,每題答對得3分,不答得0分,答錯扣1分。甲、乙、丙、丁四人的答案及前3人的得分如下表,問丁得多少分?

123456得分×√×××11甲√√√√√7乙×××√×7丙√××√√×???

7、甲、乙、丙在南京、蘇州、XX工作,他們的職業(yè)分別是工人、農(nóng)民或教師。已知:

⑴甲不在南京工作;

⑵乙不在蘇州工作的是工人;⑶在蘇州工作的是工人;⑷在南京工作的不是教師;⑸乙不是農(nóng)民。

三人各在什么地方工作?各是什么職業(yè)?

8、在一次射擊練習(xí)中,甲、乙、丙三位戰(zhàn)士打了四發(fā)子彈,全部中靶,其命中狀況如下:

①每人四發(fā)子彈所命中的環(huán)數(shù)各不一致。②每人四發(fā)子彈所命中的總環(huán)數(shù)均為17環(huán);

③乙有四發(fā)命中的環(huán)數(shù)分別與甲其中兩發(fā)一樣,乙另兩發(fā)命中的環(huán)數(shù)與丙其中兩發(fā)一樣;

④甲與丙只有一發(fā)環(huán)數(shù)一致;

⑤每人每發(fā)子彈的最好成績不超過7環(huán)。問:甲與丙命中的一致環(huán)數(shù)是幾?

9、某個家庭現(xiàn)有四個家庭成員,他們的年齡各不一致,他們的年齡總和是129歲,而其中有三個的年齡是平方數(shù),若倒退15年,這四人仍有三人的年齡是平方數(shù),你知道他們各自的年齡嗎?

10、有A、B、C三個足球隊,兩兩比賽一場,共賽了三場,A隊兩勝,進6球失2球;B隊一勝一負,進4球失4球;C隊兩負,進2球失6球。請寫出三場比賽的具體比分。

[全講綜合訓(xùn)練]

1、(北京市第九屆“迎春杯〞競賽決賽題)A、B、C、D、E五個同學(xué)來自江濱中學(xué)、第十五中學(xué)、光明中學(xué)三所學(xué)校(每所學(xué)校至少有他們當(dāng)中的一名同學(xué)),已經(jīng)知道:

⑴在光明中學(xué)舉行的晚會上,A、B、E作為被邀請的客人去該校表演小提琴三重奏;⑵B過去曾在第十五中學(xué)學(xué)習(xí),后來轉(zhuǎn)學(xué)了,現(xiàn)在同E在一個班里學(xué)習(xí);⑶D和E是同一所學(xué)校里的三好學(xué)生。

根據(jù)上述狀況,可以判斷A在哪一所中學(xué)學(xué)習(xí)?

2、(第三屆華杯賽試題)某年的10月里有5個星期六,4個星期日,問:這年的10月1日是星期幾?

3、(第五屆《小學(xué)生數(shù)學(xué)報》競賽試題)李志明、張斌、王大為三個同學(xué)畢業(yè)后選擇了不同的職業(yè),三人中有一人當(dāng)了記者,一次有人問起他們的職業(yè),李志明說:“我是記者〞張斌說:“我不是記者〞王大為說:“李志明說了假話〞假使他們?nèi)齻€人的話當(dāng)中只有一句是真的,問:誰是記者?

4、(北京市第七屆“迎春杯〞競賽試題)甲、乙、丙、丁坐在同一排的1~4號座位上,小紅看著他們說:“甲的兩邊不乙,丙的兩邊不是丁,甲的座位號比丙大〞問:坐在1號座位上的是誰?

30

5、(北京市競賽題,1988)甲、乙、丙、丁四位同學(xué)的運動衫上印上了不同的號碼。趙說:“甲是2號,乙是3號〞錢說:“丙是4號,乙是2號〞孫說:“丁是2號,丙是3號〞李說:“丁是1號,乙是3號〞

又知道趙、錢、孫、李每人都只說對了一半,問:丙的號碼是幾號?

6、(南京市競賽題,1998)A、B、C、D四名學(xué)生猜測自己的數(shù)學(xué)成績。A說:“假使我得優(yōu),那么B也得優(yōu)〞B說:“假使和得優(yōu),那么C得優(yōu)〞C說:“假使我得優(yōu),那么D也得優(yōu)〞

大家都沒說錯,但只有兩人得優(yōu),問:這兩人是誰?

7、(全國奧賽題,1989)A、B、C、D、E五人參與乒乓球賽,每兩人都要賽一盤,規(guī)定勝者得2分,負者得0分,現(xiàn)在知道比賽結(jié)果是:A和B并列第一名,C是第三名,D和E并列第四名,問:C的得分是多少?

8、(第;四、屆華杯賽決題)某校學(xué)生中,沒有一個學(xué)生讀過學(xué)校圖書館的所有圖書,又知道圖書館內(nèi)任何兩本書至少被一個同學(xué)讀過問:能不能找到兩個學(xué)生甲、乙和三本書A、B、C,甲讀過A、B,沒讀過C;乙讀過B、C,沒讀過A?說明判斷過程。

9、(北京市第十屆“迎春杯〞競賽題)布袋中12個乒乓球分別標上了1,2,3,…12,甲、乙、丙三人每人從布袋中拿四球,已知三人、所拿球上的數(shù)的和相等,甲有兩球標上5、12,乙有兩球標有6、8,丙有1球標1,問丙的其它三個球上所標的數(shù)是多少?

10、(北京市第七屆“迎春杯〞競賽題)在運動會上,小趙、小李、小劉各獲得一枚獎牌,其中一人得金牌,一人得銀牌,一人得銅牌,王老師猜測:“小趙和金牌;小李不得金牌;小劉不得銅牌〞結(jié)果王老師只猜對了一個,問:小趙、小李、小劉各得什么牌?

11、(福建省第三屆“小火炬杯〞競賽題)小蘭、小紅、小康其中有一人在縣一小念書,有一人在縣二小念書,還有一人在縣三小念書,三人中有一人愛下圍棋,有一人愛畫畫,還有一人愛彈琴,已知:

⑴小蘭不在縣一?。虎菩〖t不在縣二??;

⑶愛好彈琴的不在縣三?。虎葠巯聡宓脑诳h一?。虎蓯巯聡宓牟恍〖t;

問:這三人分別在哪一所學(xué)校念書?愛好是什么?

12、甲、乙、丙三位工人在A、B、C三家工廠當(dāng)鉗工、車工、鍛工、已知:⑴甲不在A廠;⑵乙不在B廠;

⑶在A廠的不是鉗工;⑷在B廠的是車工;⑸乙不是鍛工;

問這三位工人分別在哪家工廠,是什么工種?

13、在下圖中,二、三、四號位為前排,一、六、五號位為后排,六名排球隊員分別穿1,2,3,4,5,6,號球衣,每個隊員的站位號與他們的球衣號都不一致。一、四號位站主攻;二、五號位站二傳,三、六號位站副攻。已知:

⑴1號、6號不在后排;⑵2號、3號不是二傳手;⑶3號、4號不同排;⑷5號、6號不是副攻。判斷每個隊員的站位。

四三二六五一31

14、某學(xué)校舉行了一次長跑比賽,有A、B、C、D、E、F、G、H八人參與比賽,比賽終止后,每人都說了兩句話,即

A說:“B得了第一名;G不在我前面〞B說:“E沒有G跑得快;D不在H前面〞C說:“H不比我跑得快;F不在D前面〞D說:“我得了其次名;C不是最終一名〞E說:“我不在F前面;B不在我前面〞F說:“A得了第一或其次;E不是第四名〞G說:“有兩人同時到達終點;D不在我前面〞H說:“A不在我前面,B不在D前面〞

這八個人所說的十六句話,只有一句是正確的,你知道哪一句是正確的嗎?八名運動員的名次如何?

15、某校四年級1班、2班舉行跳棋比賽,兩班各出五名選手進行循環(huán)賽,即每名選手都與對方五名選手各賽一盤,每天賽五場,共賽五天。1班的五名選手是甲、乙、丙、丁、戊

⑴第一天甲對手其次天與乙相遇;⑵第三天被丁擊敗的選手第四天勝了戊⑶第四天戊的對手第五天與乙下成和棋;⑷第五天勝了丙的選手第三天敗給乙;⑸其次天戊的對手最終一天與甲對陣。

問第三天與甲比賽的選手,最終一天與誰比賽?

16、在一次戰(zhàn)役中,甲方俘虜了乙方100名官兵,一天甲方告知乙方的100名俘虜:明天會以一種特別的方式釋放這100名俘虜中的一些人,這100名俘虜將被排成一列,他們的頭上將隨機地被戴上一頂黑色或白色的帽子,每個人都只能看見前面所有人的帽子的顏色,但不能看到后面及自己頭上帽子的顏色。

甲方軍官將從隊伍最終一個人開始逐一詢問同樣一個問題:“請說出你頭帽子的顏色〞,假使回復(fù)正確,該俘虜將無條件獲得釋放,假使回復(fù)犯錯誤將被終身監(jiān)禁,當(dāng)然,每一個俘虜除能看到前面所有人的帽子顏色外,他還可以聽到后面俘虜所回復(fù)的帽子顏色(最終一名俘虜除外)

作為為100名俘虜?shù)闹笓]官將設(shè)計一個最好的策略告訴他的部下,在明天的“測試〞中,使盡可能多的同伴獲得釋放。

請問:被俘方的指揮官將設(shè)計一個什么樣的策略,使盡可能多的同伴(俘虜)獲得釋放,最多能釋放多少個俘虜?

第七講抽屜原理

[同步穩(wěn)定演練]

1、在一條長100米的小路一旁種101棵樹苗,證明:不管怎樣種,至少有兩棵樹苗之間的距離不超過1米。

2、一位運動員用11秒鐘跑完了100米。證明:在跑的過程中必有一秒鐘,他跑的距離超過了9米。

3、在一副撲克牌中取牌,至少取多少張,才能保證其中必有3張牌的點數(shù)一致?4、從13個自然數(shù)中,一定可以找到兩個數(shù),它們的差是12的倍數(shù)。

5、20名乒乓球運動員進行單循環(huán)比賽。證明:在比賽過程中的任何時候,至少有兩位選手比賽過的場次一致。

6、圖書角有三種圖書:科技書、文藝書、故事書。每位學(xué)生可任意借兩本圖書。問:至少應(yīng)有多少學(xué)生來借書,才能保證其中必有4人借的書完全一致?

7、一個幼兒班有40名小朋友,現(xiàn)在有各種玩具125件。把這些玩具分給小朋友,是否有人會想到4件或4件以上的玩具?

8、有三張卡片,卡車上分別寫著數(shù)字1、2、3。同學(xué)們?nèi)我膺x兩張數(shù)字不同的卡片組成

32

一個兩位數(shù)。問至少要有幾個同學(xué)才能保證有兩個人選的卡片所組成的兩位數(shù)一致?

9、19朵鮮花插入4個花瓶里。求證:至少有一個花瓶里要插入5朵或5朵以上的鮮花。

10、在一個口袋里有紅、黃、藍三種顏色的小球,一次至少摸出多少個小球,才能保證至少有4個球的顏色一致。

11、某班共有40名學(xué)生,他們都參與了課外興趣小組,活動分英語組、書法組、鋼琴組,每人可任選一個或幾個組參與,那么班級中至少有多少個學(xué)生參與的組和組數(shù)完全一致?

12、一個口袋里有5個黑球,8個白球,9個紅球,2個藍球,一次至少取出多少個球才能保證至少有一個紅球?

13、夏令營有400個小朋友參與,這些小朋友中至少有人在同一天過生日。14、任意取多少個自然數(shù),才能保證至少有兩個數(shù)的差是7的倍數(shù)?

15.在正方體的每個面上,分別涂上紅、黃、藍三種顏色(每個面上只涂一色)。證明:至少有二個面涂有一致的顏色。

[能力拓展平臺]

1、某商店有126箱蘋果,每箱至少有120個,至多有144個,現(xiàn)將蘋果個數(shù)一致的箱子作為一組,假使其中箱子數(shù)最多的一組有n個箱子,那么n的最小值是多少?

2、在一個邊長為1分米的正三角形內(nèi)任意放置10個點。證明:至少有2個點之間的距離不超過

1分米。33、至少要給出多少個自然數(shù)(這些數(shù)可以隨便寫),才能保證其中必有兩個數(shù),它們的差是7的倍數(shù)?

4、在邊長為4的正方形內(nèi),至少任意放進幾個點,那么其中必有3個點,它們構(gòu)成的三角形的面積不大于2?

5、從1,2,3…,100這100個數(shù)中任意挑出51個數(shù)來,證明在這51個數(shù)中,一定有:(1)2個數(shù)互質(zhì);(2)2個數(shù)的差為50;(3)8個數(shù),它們的最大公約數(shù)大于1。

6、任意給定1991個自然數(shù)。證明:其中必有若干自然數(shù)的和是1991的倍數(shù)。

7、將1,2,3,…,9,10這10個數(shù)按任意順序排在一個圓周上。證明:在圓周上的10個數(shù)中,必有相鄰的3個數(shù),其和不小于17。

8、上體育課時,21名男女學(xué)生排成3行7列的隊形做操。老師發(fā)現(xiàn)按大小個的排法可以從隊形中劃出一個矩形,站在這個矩形四個角上的學(xué)生或者都是男生或者都是女生。你能不能找一種排法,仍是站3行7列,但上面所說的矩形不存在?假使能,說出站法;假使不能,說明原因。

9、平面上給定6個點,沒有三個點在一條直線上。證明:用這些點為頂點所組成的三角形中,一定有一個三角形,它的最大邊同時是另一個三角形的最小邊。

10、已知在邊長為1的等邊三角形內(nèi)(包括邊界),任意點了五個點,求證:至少有兩點之間的距離不大于

1。2第10題[全講綜合訓(xùn)練]

1、(全國小學(xué)數(shù)學(xué)競賽題)幼兒園小朋友分水果,有蘋果、鴨梨和橘子三種,假使每

33

個小朋友任意拿兩個,那么至少幾個小朋友拿過后才一定會出現(xiàn)兩人拿的水果是一致的。

2、(全國小學(xué)數(shù)學(xué)競賽題)三(2)班有44名學(xué)生,他們都訂了甲、乙、丙三種報刊中的若干種,有的只訂甲,有的只訂乙,有的只訂丙,有的訂甲乙,有的訂甲丙,有的訂乙丙,還有甲乙丙都訂,問一定至少可以找出幾個人訂的報刊一致。

3、一次數(shù)學(xué)競賽出了10道選擇題,評分標準為:基礎(chǔ)分10分,每道題答對得3分,答錯扣一分,不答不得分。要保證至少4人得分一致,至少需多少人參與競賽?

4、有一批四種顏色的小旗,任意取三面排成一行,表示各種信號。某天上午共打了200次信號,其中至少有多少個信號一致?

5、在10×10方格紙的每個方格中任意填入1、2、3、4四個數(shù)之一,然后分別對每個2×2方格中的四個數(shù)求和。在這些數(shù)中,至少有幾個一致。

6、(其次屆新苗杯競賽題)五年級有165個學(xué)生,都參與籃球、足球和乒乓球三項體育活動中的一項、二項或三項,其中一定可以找到至少幾個同學(xué)參與了項目一致的活動?

7、(其次屆新苗杯競賽題)六年級有168個學(xué)生,都參與籃球、足球、乒乓球和跳繩四項體育活動中的一項、二項、三項或四項,其中一定可以至少找出多少個同學(xué)參與了項目一致的活動?

8、黑色、白色、黃色、紅色的筷子分別有1根、3根、5根和7根混雜在一起,黑暗中想從這些筷子中取出顏色不同的兩雙筷子,至少要取多少根才能保證達到要求?

9、一個袋子中有100只紅襪子,80只藍襪子,60只綠襪子,40只白襪子,讓你閉上眼睛從袋子中摸襪子,每次只許摸一只。至少要摸出多少只,才能保證摸出的這幾只襪子中至少有一雙顏色一樣。

10、用2、4、6、8這四個數(shù)字任意寫一個2000位數(shù),從這個2000位數(shù)中任意截取相鄰的4個數(shù)字,可以組成許多的四位數(shù),這些四位數(shù)中至少有多少個一致?

11、(全國奧賽題,1992)如圖,在23×23的方格紙中,將1至9這9個數(shù)字填入每個小方格,并對所有形如“〞的五個方格中的數(shù)求和,對于小方格中數(shù)字的任一種填法,找出其中相等的和數(shù),則一定能保證至少有多少個相等的和出現(xiàn)?

12、幼兒園買來不少白兔、狗、長頸鹿玩具,每個小朋友都分到其中的一、二或三種,某班有40人,他們當(dāng)中至少有多少人擁有玩具一致?

13、任意多少個自然數(shù),就可以保證其中必有四個數(shù)的和是4的倍數(shù)?

14、某班同學(xué)要從10名候選人中投票選舉班干部。假使每個同學(xué)只能投票任選兩名候選人,那么這個班至少應(yīng)有多少個同學(xué),才能保證必有兩個或兩個以上的同學(xué)投一致兩名候選人的票?

15、(第十三屆未來杯競賽題)從4,8,12,16,20,…,72,76這列數(shù)(都是4的倍數(shù),最大是76)任取11個數(shù),其中至少有兩個數(shù)的差為36,請說明為什么?

16、一個箱子里有50只球,其中,紅、黃、藍、墨球各10只,其余為紫球和綠球,這些球只是顏色不同,假使在黑暗中取球,要取出至少5只同色球,那么至少要取出多少只球?

17、從2,4,6,8,…,56,58這29個偶數(shù)中至少任意取出多少個數(shù)才能保證有兩個數(shù)的和為62?

18、設(shè)自然數(shù)n具有以下性質(zhì):從前n個自然數(shù)中任取21個,其中必有兩個數(shù)的差是5。這樣的n中最大的是。

19、兩個布袋中有12個大小一樣的球,且都是紅、白、藍色各4個。先從第一個袋中盡可能少且至少有兩個顏色一樣的球放入其次個袋中,再從其次個袋中拿出盡可能少的球放入第一個袋中,使第一個袋中每種顏色的球不少于3個。這時兩個袋中各有多少個球(拿球時不許看)。

20、任意給定一個正整數(shù)n,一定可以將它乘以適當(dāng)?shù)恼麛?shù),使得乘積是完全由0及7組成的數(shù)。

34

下學(xué)期

第八講數(shù)的整除

[同步穩(wěn)定演練]

1、小光買了3支鉛筆、5支圓珠筆、8支筆記本和12塊橡皮,共用去12元1角,鉛筆1角2分1支,圓珠筆8角1支,售貨員的賬算錯了沒有?

2、光華小學(xué)為同學(xué)們代買179支鉛筆和179塊橡皮,鉛筆8角1支,橡皮3角1塊,營業(yè)員告訴購買員要付186.9元,購買員并沒有具體核算就告訴營業(yè)員算錯了。他怎么知道的呢?

3、整數(shù)A427B6能被72整除,求A和B各表示多少?4、能被4、5、6整除的最大三位數(shù)是多少?

5、已知一個自然數(shù)A,它能被15整除,且它的各個數(shù)位上的數(shù)字只有2、5兩種,則這種最小的六位數(shù)A是多少?

6、在532后面補上三個數(shù)字,組成一個六位數(shù),使它能分別被3、4、5整除,這樣的六位數(shù)中最小的是多少?

7、四位數(shù)8A1B能同時被5、6整除,則這個四位數(shù)是多少?

8、一個兩位數(shù),將它的十位數(shù)字與個位數(shù)字互換所成的兩位數(shù)與原數(shù)的乘積是3154,求原數(shù)。

9、有一個六位數(shù)□1989□能被44整除,求這個六位數(shù)。

10、已知75|3A6B5,這個五位數(shù)最大是多少?

11、五位數(shù)4H97H能被3整除,且末兩位7H能被6整除,求這個五位數(shù)。12、九位數(shù)2AB2AB2AB是91的倍數(shù),求這個九位數(shù)是多少?

13、填上適當(dāng)?shù)臄?shù)字,使36□□這個四位數(shù)能同時被2、3、4、5、9整除。14、連續(xù)三個自然數(shù)的積一定是6的倍數(shù),為什么?15、連續(xù)四個自然數(shù)的積一定是12的倍數(shù),為什么?

16、假使六位數(shù)□1993□能被33整除,這樣的六位數(shù)有哪些?

17、已知整數(shù)1a2a3a4a5a能被11整除,則a=。18、四位數(shù)7□4□能被55整除,這樣的四位數(shù)有哪些?

19、一個七位數(shù)的各位數(shù)字均不一致,并且它能被11整除,這樣的七位數(shù)中,最大的一個是多少?

20、從0、3、5、7這四個數(shù)字中任選3個數(shù),排成能同時被2、3、5整除的三位數(shù),這樣的三位數(shù)有多少?

21、一個無重復(fù)數(shù)字的五位數(shù)3□6□5,千位與十位數(shù)字看不清了,但知這個數(shù)是75的倍數(shù),問這種五位數(shù)有哪幾個?

22、一個五位數(shù),各個數(shù)位上的數(shù)字均不一致,它能被3、5、7、11整除,這樣的數(shù)中最大的是多少?

23、一個六位數(shù)的各位數(shù)字均不一致,最左邊一位的數(shù)字是3,且它能被11整除,這樣的六位數(shù)中最小的是多少?

35

24、商店里有6只不同的貨箱,分別裝有貨物15、16、18、19、20、31千克。兩個顧客買走了其中5箱貨物,而且一個顧客的貨物重量是另一個顧客的2倍,商店里剩下的那箱貨物是多少千克?

25、731□是一個四位數(shù),在□內(nèi)依次填入三個數(shù)字,使組成的三個四位數(shù)依次能被9、11、6整除,這三個數(shù)字之和是多少?

26、將1,2,3,…,30從左到右依次排列成一個51位數(shù)123456…2930,試求這個51位數(shù)除以11的余數(shù)。

27、55個蘋果分給甲、乙、丙三人,甲的蘋果個數(shù)是乙的2倍,丙最少,但也多于10個,則甲、乙、丙分別得蘋果多少個?

28、三個數(shù)分別是346,734,983,請再寫一個比996大的三位數(shù),使這四個數(shù)的平均數(shù)是一個整數(shù),這個三位數(shù)是多少?

29、在1至100這100個自然數(shù)中,有多少個不能被3或7整除?

30、在368后面補上三個數(shù)字組成一個六位數(shù),使它同時能被3,4,5整除,這樣的六位數(shù)中最小的是多少?

31、用1至9這九個數(shù)字每個數(shù)字各一次,組成三個能被9整除的三位數(shù),要求這三個數(shù)的和盡可能大,則這三個數(shù)分別是多少?

32、已知A是一個自然數(shù),它是15的倍數(shù),并且它的各個數(shù)位上的數(shù)字只有0和4兩種,A最小是多少?

[能力拓展平臺]

1、從0、2、3、7、9這五個數(shù)字中選出三個數(shù)字組成三位數(shù)。在所有這樣的三位數(shù)中,能被3整除的數(shù)多,還是能被9整除的數(shù)多?多多少個?

2、有一類自然數(shù)111…1,它的各位數(shù)字都是1,并且它們都是7的倍數(shù),也是37的倍數(shù),還是11的倍數(shù)。這樣的自然數(shù)中最小的一個是多少?

3、有一類三位數(shù),它能被11整除,假使去掉末位數(shù)字,所得的兩位數(shù)又能被18整除,這樣的三位數(shù)有哪些?

4、一個六位數(shù),六個數(shù)字各不一致,且是17的倍數(shù)。符合條件的最大六位數(shù)是多少?5、三位數(shù)的百位、十位、個位的數(shù)字分別是5、a、b,將它們接連重復(fù)寫99次成為:5ab5ab?5ab假使此數(shù)能被91整除,這個三位數(shù)5ab是多少????????99個5ab6、將自然數(shù)1,2,3,4,5,6,7,8,9依次重復(fù)寫下去組成一個1993位數(shù),試問:這個數(shù)能否被3整除?

7、某小學(xué)四、五六年級學(xué)生下午參與勞動,其中一個班的學(xué)生留下來清潔環(huán)境衛(wèi)生,一部分學(xué)生到建筑工地搬磚,其余學(xué)生到校辦工廠勞動,且到建筑工地搬磚人數(shù)是到校辦工廠勞動人數(shù)的2倍。各個班級參與勞動人數(shù)如下表,留下來清潔衛(wèi)生的是哪個班?年級四五六2341234123班組1人數(shù)5554575554515453515248

8、用1、2、3、4、5、6、7、8、9這九個數(shù)字每字各用一次,寫出三個能被9整除的盡可能大的三位數(shù),這三個數(shù)各是多少?

9、某個七位數(shù)1993□□□能被2,3,4,5,6,7,8,9都整除,那么它的最終三個數(shù)字組成的三位數(shù)是多少?

10、將自然數(shù)1、2、3、4、…依次寫下去組成一個數(shù)12345678910111213……假使寫到某個自然數(shù)時,所形成的數(shù)恰好第1次能被72整除,那么這個自然數(shù)是多少?

11、將自然數(shù)10,11,…,50從左到右右依次排列成一個多位數(shù)101112…4950,求這個多位數(shù)除以11的余數(shù)。

12、在□內(nèi)填上適合的數(shù)字,使六位數(shù)19□88□能被35整除。

13、一個位數(shù),它能被9和11整除,去掉這個六位數(shù)的首、尾兩個數(shù)字,中間的四個數(shù)字是2023,問這個六位數(shù)是多少?

36

14、一個自然數(shù)與19的乘積的最終三位數(shù)是321,求滿足條件的最小的自然數(shù)。

15、四個連續(xù)自然數(shù)的和是一個在400至440之間的三位數(shù),并且這個和能被9整除,求這四個連續(xù)自然數(shù)。

16、兩個自然數(shù)的各位數(shù)字中都只用到1、4、6、9這四種數(shù)碼。問:是否有可能使其中的一個自然數(shù)恰好是另一個自然數(shù)的17倍?

17、將自然數(shù)N接在任一自然數(shù)的右面(例如將2接在35的右面得352),假使所得的新數(shù)都能被N整除,那么稱N為“巧妙數(shù)〞問:在小于130的自然數(shù)中有多少個“巧妙數(shù)〞?[全講綜合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論