




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓的圓心為(-2,1),其一條直徑的兩個端點恰好在兩坐標(biāo)軸上,則這個圓的方程是()A. B.C. D.2.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡3.若函數(shù)f(x)=loga(x2–ax+2)在區(qū)間(0,1]上單調(diào)遞減,則實數(shù)a的取值范圍是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)4.菱形ABCD,E是AB邊靠近A的一個三等分點,DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.95.某人打靶時連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.兩次都中靶D.兩次都不中靶6.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.7.已知點是直線上一動點、是圓的兩條切線,、是切點,若四邊形的最小面積是,則的值為()A. B. C. D.8.為了調(diào)查老師對微課堂的了解程度,某市擬采用分層抽樣的方法從,,三所中學(xué)抽取60名教師進(jìn)行調(diào)查,已知,,三所學(xué)校中分別有180,270,90名教師,則從學(xué)校中應(yīng)抽取的人數(shù)為()A.10 B.12 C.18 D.249.若,則一定有()A. B. C. D.10.已知角的終邊過點,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,,則的最小值為__________.12.若關(guān)于的不等式有解,則實數(shù)的取值范圍為________.13.在等比數(shù)列中,已知,則=________________.14.已知直線過點,且在兩坐標(biāo)軸上的截距相等,則此直線的方程為_____________.15.已知為銳角,則_______.16.設(shè)等差數(shù)列的前項和為,若,,則的最小值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,是正三角形,線段和都垂直于平面,設(shè),,且為的中點.(1)求證:平面;(2)求平面與平面所成的較小二面角的大小18.設(shè)二次函數(shù)f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍;(2)當(dāng)b=1時,若對任意x∈[0,1],-1≤f(x)≤1恒成立,求實數(shù)a的取值范圍.19.已知圓的圓心在線段上,圓經(jīng)過點,且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點,當(dāng)最小時,求直線的方程及的最小值.20.已知,,求的值.21.如圖,在四棱錐中,底面是正方形,底面,點是的中點,點是和的交點.(1)證明:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】設(shè)直徑的兩個端點分別A(a,2)、B(2,b),圓心C為點(-1,1),由中點坐標(biāo)公式得解得a=-4,b=1.∴半徑r=∴圓的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故選C.2、B【解析】
概率的事件可以認(rèn)為是概率為的對立事件.【詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【點睛】本題考查對立事件,解題關(guān)鍵是掌握對立事件的概率性質(zhì):即對立事件的概率和為1.3、A【解析】
函數(shù)為函數(shù)與的復(fù)合函數(shù),復(fù)合函數(shù)的單調(diào)性是同則增,異則減,討論,,結(jié)合二次函數(shù)的單調(diào)性,同時還要保證真數(shù)恒大于零,由二次函數(shù)的圖象和性質(zhì)列不等式即可求得的范圍.【詳解】∵函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),∴時,在上為單調(diào)遞減函數(shù),且在上恒成立,∴需在上的最小值,且對稱軸,∴,當(dāng)時,在上為單調(diào)遞增函數(shù),不成立,綜上可得的范圍是,故選:A.【點睛】本題考查了對數(shù)函數(shù)的圖象和性質(zhì),二次函數(shù)圖象和性質(zhì),復(fù)合函數(shù)的定義域與單調(diào)性,不等式恒成立問題的解法,轉(zhuǎn)化化歸的思想方法,屬于中檔題.4、B【解析】
設(shè)出菱形的邊長,在三角形ADE中,用余弦定理表示出cosA【詳解】設(shè)菱形的邊長為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【點睛】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.5、D【解析】
根據(jù)互斥事件的定義逐個分析即可.【詳解】“至少有一次中靶”與“至多有一次中靶”均包含中靶一次的情況.故A錯誤.“至少有一次中靶”與“只有一次中靶”均包含中靶一次的情況.故B錯誤.“至少有一次中靶”與“兩次都中靶”均包含中靶兩次的情況.故C錯誤.根據(jù)互斥事件的定義可得,事件“至少有一次中靶”的互斥事件是“兩次都不中靶”.故選:D【點睛】本題主要考查了互斥事件的辨析,屬于基礎(chǔ)題型.6、A【解析】
該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運用,屬基礎(chǔ)題.7、D【解析】
作出圖形,可知,由四邊形的最小面積是,可知此時取最小值,由勾股定理可知的最小值為,即圓心到直線的距離為,結(jié)合點到直線的距離公式可求出的值.【詳解】如下圖所示,由切線長定理可得,又,,且,,所以,四邊形的面積為面積的兩倍,圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,四邊形的最小面積是,所以,面積的最小值為,又,,由勾股定理,當(dāng)直線與直線垂直時,取最小值,即,整理得,,解得.故選:D.【點睛】本題考查由四邊形面積的最值求參數(shù)的值,涉及直線與圓的位置關(guān)系的應(yīng)用,解題的關(guān)鍵就是確定動點的位置,考查分析問題和解決問題的能力,屬于中等題.8、A【解析】
按照分層抽樣原則,每部分抽取的概率相等,按比例分配給每部分,即可求解.【詳解】,,三所學(xué)校教師總和為540,從中抽取60人,則從學(xué)校中應(yīng)抽取的人數(shù)為人.故選:A.【點睛】本題考查分層抽樣抽取方法,按比例分配是解題的關(guān)鍵,屬于基礎(chǔ)題.9、C【解析】
由題,可得,且,即,整理后即可得到作出判斷【詳解】由題可得,則,因為,則,,則有,所以,即故選C【點睛】本題考查不等式的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題10、D【解析】
首先根據(jù)三角函數(shù)的定義,求得,之后應(yīng)用三角函數(shù)的誘導(dǎo)公式,化簡求得結(jié)果.【詳解】由已知得,則.故選D【點睛】該題考查的是有關(guān)三角函數(shù)的化簡求值問題,涉及到的知識點有三角函數(shù)的定義,誘導(dǎo)公式,屬于簡單題目.二、填空題:本大題共6小題,每小題5分,共30分。11、25【解析】
變形后,利用基本不等式可得.【詳解】當(dāng)且僅當(dāng),即,時取等號.故答案為:25【點睛】本題考查了利用基本不等式求最值,屬于基礎(chǔ)題.12、【解析】
利用判別式可求實數(shù)的取值范圍.【詳解】不等式有解等價于有解,所以,故或,填.【點睛】本題考查一元二次不等式有解問題,屬于基礎(chǔ)題.13、【解析】14、或【解析】
分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時,設(shè)出該直線的方程為,把已知點坐標(biāo)代入即可求出的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為,把已知點的坐標(biāo)代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.【詳解】解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時,設(shè)該直線的方程為,把代入所設(shè)的方程得:,則所求直線的方程為即;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為,把代入所求的方程得:,則所求直線的方程為即.綜上,所求直線的方程為:或.故答案為:或【點睛】此題考查學(xué)生會根據(jù)條件設(shè)出直線的截距式方程和點斜式方程,考查了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.15、【解析】
利用同角三角函數(shù)的基本關(guān)系得,再根據(jù)角度關(guān)系,利用誘導(dǎo)公式即可得答案.【詳解】∵且,∴;∵,∴.故答案為:.【點睛】本題考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號問題.16、【解析】
用基本量法求出數(shù)列的通項公式,由通項公式可得取最小值時的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點睛】本題考查等差數(shù)列的前項和的最值.首項為負(fù)且遞增的等差數(shù)列,滿足的最大的使得最小,首項為正且遞減的等差數(shù)列,滿足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識求得最值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)取的中點,連接,先證即說明,再由線面平行的判定定理說明平面.(2)延長交的延長線于,連.說明為所求二面角的平面角.再計算即可.【詳解】解:(1)如圖所示,取的中點,連接.∵,∴.又,∴.∴四邊形為平行四邊形.故.∵平面,平面,∴平面.(2)延長交的延長線于,連.由,知,為的中點,又為的中點,∴.又平面,,∴平面.∴為所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小為.【點睛】本題考查線面平行、二面角的平面角,屬于中檔題.18、(1)5≤f(-2)≤10;(2)[-2,0).【解析】
(1)用和表示,再根據(jù)不等式的性質(zhì)求得.(2)對進(jìn)行參變分離,根據(jù)和求得.【詳解】解(1)方法一?∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二設(shè)f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比較兩邊系數(shù):?∴f(-2)=3f(-1)+f(1),下同方法一.(2)當(dāng)x∈[0,1]時,-1≤f(x)≤1,即-1≤ax2+x≤1,即當(dāng)x∈[0,1]時,ax2+x+1≥0且ax2+x-1≤0恒成立;當(dāng)x=0時,顯然,ax2+x+1≥0且ax2+x-1≤0均成立;當(dāng)x∈(0,1]時,若ax2+x+1≥0恒成立,則a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值為-2,∴a≥-2;當(dāng)x∈(0,1]時,ax2+x-1≤0恒成立,則a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值為0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范圍為[-2,0).【點睛】本題考查不等式的性質(zhì)和參變分離的恒成立問題,屬于難度題.19、(1)(2)的方程為,最小為【解析】
(1)設(shè)圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點,當(dāng)直線與直線垂直時,直線被圓截得的弦最小,求解即可.【詳解】解:(1)設(shè)圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點斜式,所以過定點.又點在圓內(nèi),當(dāng)直線與直線垂直時,直線被圓截得的弦最小.因為,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 森林公園施工合同
- 汽車維修勞動合同
- 磋商與訂立合同三
- 月嫂居間合同協(xié)議書
- 2燕子(教學(xué)設(shè)計)-2023-2024學(xué)年統(tǒng)編版語文三年級下冊
- 山東管理學(xué)院《有機化學(xué)G》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建技術(shù)師范學(xué)院《推拿及運動損傷治療》2023-2024學(xué)年第二學(xué)期期末試卷
- 韶關(guān)學(xué)院《化工設(shè)備基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴陽學(xué)院《基礎(chǔ)化學(xué)實驗(4)》2023-2024學(xué)年第二學(xué)期期末試卷
- 黃淮學(xué)院《中學(xué)物理實驗訓(xùn)練與研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年俄羅斯高空作業(yè)平臺車行業(yè)應(yīng)用與市場潛力評估
- 【中考真題】2024年河南省普通高中招生考試歷史試卷(含答案)
- 2024版年度經(jīng)濟法基礎(chǔ)完整全套課件
- JT-T-445-2021汽車底盤測功機
- 體育科學(xué):田徑考試考試題(三)
- 2024年4月自考03200預(yù)防醫(yī)學(xué)(二)試題
- 《研學(xué)旅行市場營銷》課件-模塊八 研學(xué)旅行促銷策略
- 糖尿病孕婦護理:案例分析
- 《過華清宮絕句(其一)》-【中職專用】高一語文(高教版2023基礎(chǔ)模塊下冊)
- (2024年)新版藥品管理法培訓(xùn)課件
- 2022年4月自考00808商法試題及答案含解析
評論
0/150
提交評論