![工程設(shè)計(jì)實(shí)驗(yàn)設(shè)計(jì)doc 5_第1頁](http://file4.renrendoc.com/view/d0ebca77d213c556be80c07a6cce9027/d0ebca77d213c556be80c07a6cce90271.gif)
![工程設(shè)計(jì)實(shí)驗(yàn)設(shè)計(jì)doc 5_第2頁](http://file4.renrendoc.com/view/d0ebca77d213c556be80c07a6cce9027/d0ebca77d213c556be80c07a6cce90272.gif)
![工程設(shè)計(jì)實(shí)驗(yàn)設(shè)計(jì)doc 5_第3頁](http://file4.renrendoc.com/view/d0ebca77d213c556be80c07a6cce9027/d0ebca77d213c556be80c07a6cce90273.gif)
![工程設(shè)計(jì)實(shí)驗(yàn)設(shè)計(jì)doc 5_第4頁](http://file4.renrendoc.com/view/d0ebca77d213c556be80c07a6cce9027/d0ebca77d213c556be80c07a6cce90274.gif)
![工程設(shè)計(jì)實(shí)驗(yàn)設(shè)計(jì)doc 5_第5頁](http://file4.renrendoc.com/view/d0ebca77d213c556be80c07a6cce9027/d0ebca77d213c556be80c07a6cce90275.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
DesignofExperiments(DOE)
Thesubjectmattercontainedhereiniscoveredbyacopyrightownedby:
FORDMOTORCOMPANY
CORPORATEQUALITYDEVELOPMENTCENTER
DEARBORN,MI
Copyright?2001FordMotorCompany
Thisdocumentcontainsinformationthatmaybeproprietary.ThecontentsofthisdocumentmaynotbeduplicatedbyanymeanswithoutthewrittenpermissionofFordMotorCompany.
Allrightsreserved
TableofContents
TOC\h\z\t"p-head1,1,p-head2,2"
Introduction
3
Agenda
3
PurposeoftheCourse
5
Goal
5
Objectives
5
DesignofExperiments(DOE)History
7
DOEandtheSTAEngineer
7
DefinitionofDOE
7
UsesofDOE
9
Planning
10
StepsforExperimentalDesign
10
DOEPlanAnalysis
13
CommonFailures
13
InfluencesonControlFactors
13
EvaluationProcedures
15
StepsoftheDOE
17
ChecklistforDOE
19
QuestionstoAsktheSupplieraboutthePlan
21
Addingup(Pool)StandardDeviations
22
StepsforSimpleAnalysis
24
FactorialExperiments
25
BasicConcept
25
InteractionEffects
29
FractionalFactorials
30
UseoftheResults
32
APracticalAidforExperimenters
33
SignificanceofFactorEffects
35
Activity:TypicalThree-factortwo-levelexperiment
36
FractionalFactorialDesign
37
DOEMethods
39
ClassicalVersusTaguchiMethods
39
Taguchi’sLossFunction
41
Optimalcostofquality
42
TaguchiMethod
44
TaguchiCake-BakingExample
45
TipsfromTaguchi
47
Signal-to-NoiseRatio
49
ControllingNoise
51
InnerandOuterArrays
52
SignaltoNoiseforMaximumorMinimum
54
ConfirmingtheExperiment
56
EvolutionaryOperation(EvOp)
58
ANOVAMethods
60
AssumptionsforApplyingANOVA
60
AnalysisofVariance
62
CalculationsforANOVATable
64
CaseStudies
69
CaseStudy1—TheMismatchedMuffler
70
CaseStudy2
71
Summary
74
AdditionalResources
76
SubjectMatterExpert(SME)
76
AdditionalTraining
76
References
76
ReviewofAnswerstoPre-TestandPost-Test
77
Introduction
WelcometotheDesignofExperiments(DOE)course,partoftheCorporateQualityDevelopmentCentercurriculum.ThisisoneofthecoursesintheQualityToolsmodule,whichisdesignedtoprovideSTAEngineerswithpracticalknowledgeofthetoolsrequiredtosuccessfullyaccomplishtheirjobs.
Agenda
Introduction
DesignofExperiment(DOE)History
Planning
DOEPlanAnalysis
FactorialExperiments
DOEMethods
CaseStudies
Summary
AdditionalResources
PurposeoftheCourse
Thiscoursepresentsstatisticalconceptsneededtodesign,conduct,analyze,andinterpretmulti-factorexperiments,whichareusedinfactorscreening,characterizingandoptimizingofprocesses.
Goal
ThegoalofthiscourseistoprovideSTAEngineerswiththeknowledgetoreviewaSupplier’sDOEtodetermineifithasbeensetup,performed,implementedandanalyzedcorrectly.
Objectives
Uponcompletionofthiscourse,theparticipantwillbeableto:
DefinetheroleoftheSTAEngineerinrelationtoDOEandprocessimprovement
DefinethepurposeofDOEandapplicationtypes(ClassicalandTaguchi)
IdentifycriteriaforconductingaDOE
ExplainthebasicstepsofconductingaDOE
RecognizeappropriateandinappropriateoutcomesandprocessesofaSupplierDOE(casestudies)
IdentifycommonfailuresthatanSTAEngineermayencounterwhilereviewingaDOE
IdentifystrategicquestionsthatshouldbeaskedwhenreviewingaDOE
ExplaintherelationshipbetweenDOEandtherestofthequalitytools
IdentifyadditionalresourcesavailabletoassistwiththeconductoranalysisofaDOE
DesignofExperiments(DOE)History
ThehistoryofDOEgoesbacktothe1920s,whenitwasusedinagriculture.TodayitisawidelyexpectedengineeringtoolusedatFordandbyitsSuppliers.
DOEandtheSTAEngineer
TheroleofanSTAEngineeristounderstandDOEinordertomakesoundjudgmentswhendealingwithSuppliers.TheSTAEngineerwillneedtorecognizeifaSupplierhastheabilitytosetup,perform,implement,andanalyzetheimprovementprocesscorrectly.
DefinitionofDOE
DOEisatotalplanofactionaimedatobtainingknowledgeaboutagivenprocesstoimproveitortosolveaproblem.Theobjectiveofadesignedexperimentistoobtainmoreinformationwithlessexpenditureofresourcesthancanbeobtainedbytraditional(onefactoratatime)techniques.
DOEwaspioneeredbyR.A.Fisher,anagriculturalscientist,inEnglandinthe1920s.Heusedthetechniquetostudytheeffectontheoutcomeofmultiplevariablessimultaneously.Fisherwantedtofindouthowmuchrain,water,fertilizer,sunshine,etc.wereneededtoproducethebestcrop.
PESTICIDE
B2
B1
2"
4"
6"
8"
A1
FERTILIZER
A2
UsesofDOE
DesignofExperimentscanplayakeyroleinunderstandingandimprovingthereliabilityofFord’svehicles.
Experimentationcanbeusedto:
Modeldegradationoffunctioninvehiclesystems
Identifyfactorsthatsignificantlyimprovesystemlifeordegradationrate
Modelmultivariatefunctionalrelationshipsthatcanbeusedforoptimizationstudies
DOEatFordwill:
Reduceimperfectionsinparts
Reducecosts
Reduceguesswork
Reducelosttime
Improvecustomerrelations
ImproverelationswithSuppliers
Improveproductivity
ClassicalDOEprovidesapredictiveequation.
TaguchiDOEquicklysolvesproblems.
Planning
StepsforExperimentalDesign
Statetheproblem(s):Usequalitymeasurestoclearlyindicatethelevelofqualityorloss.ThismaycomefromtheGlobal8Danalysis.Theproblemstatementshouldaddressthefollowing:
Whatdataexiststhatcharacterizestheproblemasitoccurs
Howtheproblemisobserved
Whentheproblemoccurs
Howseveretheproblemis
Wheretheproblemoccurs
Statetheobjectiveoftheexperiment:Thisstatementshouldaddressthescopeoftheexperimentandshouldbebasedon:
Theproblemstatement
Competitivebenchmarkinformationconcerningtheproblem
Customerinformationconcerningtheproblem
StartDate_________ EndDate______________
Selectthequalitycharacteristicsandmeasurementsystems:Thecharacteristics(responses,dependentvariables,oroutputvariables)shouldberelatedtocustomerneedsandexpectations.Thechartbelowcapturestheresponse,thetype,andtheanticipatedrangethathelpstodeterminethemethodofmeasurement
Response
Type
AnticipatedRange
MeasurementMethod/Accuracy
StepsforExperimentalDesign,continued
Selectthefactorsthatmayinfluencetheselectedqualitycharacteristics:Processflowdiagrams,cause/effectdiagrams,specifications,statisticalprocesscontrolchartresultsaresomesourcesforthisinformationandmaybecapturedinachartsimilartotheonebelow.
Factor
Type
ControllableorNoise
RangeofInterest
Levels
AnticipatedInteractionswith
HowMeasured
1.
2.
3.
4.
Determinethenumberofresourcestobeusedintheexperiment:Considerthedesirednumber,thecostperresource,timeperexperimentaltrialandthemaximumallowablenumberofresources.
Determinewhichdesigntypesandanalysisstrategiesareappropriate:Discussadvantagesanddisadvantagesofeach.
Selectthebestdesigntypeandanalysisstrategytosuittheneeds.
Determineifalltherunscanberandomizedandwhichfactorsaremostdifficulttorandomize.
Conducttheexperimentandrecordthedata:Monitorboththeeventsforaccuracy.
Analyzethedata,drawconclusions,makepredictions,anddoconfirmatorytests.
Assessresults,makedecisions,anddocumentresults:Evaluatenewstateofqualityandcomparewithlevelpriortoimprovementeffort.
DOEPlanAnalysis
Whenanalyzingtheplan,itisimportanttounderstandthecommonfailuresandinfluencesofcontrolfactorsinordertoverifythattheplanhasaccountedforthesefactors.
CommonFailures
ThecommonfailuresthatoccurwhenconductingaDOEare:
Dataiscollectedwhenthereisonlyonevariable.
Supplieroftenleavesouttheinteraction.
Supplierhasnotidentifiedrecentchangesintheprocess.
InfluencesonControlFactors
Temperature
Differentoperators
Humidity
Locationofplant
Environmentalfactors
Lackofconsistency
Differentsamplesize
EvaluationProcedures
Definepreciselytheproceduresforrunningtheexperiment,indicatingwhichfactorscanbeeasilychangedfromoneruntothenext.
Getinformationregardingpastdataandrepeatability.
Determinedesirabilityandopportunitiesforrunningtheexperimentinstages.
Listrelationshipbetweentheindependentvariableandresponsevariable.
StepsoftheDOE
Tasks
TaskAids
Who
Stateproblem(s)
QualityFunctionDeployment,testfailures,warrantyitems,scrapitems,ParetoAnalysis
Productand/orprocessexperts
Stateobjective(s)
Customerrequirements,competitivebenchmarks
Selectqualitycharacteristic(s)&measurementsystem(s)
Gagerepeatability&reproducibilityanalysis
Selectfactorsandinteractions;determinecontrolandnoisefactors
Fishbonediagram,flowcharts,SPCcharts
Selectlevels
Specificationlimits,operationallimits
Selectorthogonalarray(s)
OAselectiontablesD-1,D-2;blankOAs
Assignfactors&interactionstoorthogonalarray(s)
AssignmenttablesD-3,D-4;interactiontables;OAmodificationrules
DOEexpert
Conducttests
Computersoftware,trialdatasheets,randomizationplan,partserializationplan,materiallogisticsplan
Product,process,andDOEexperts
Analyzeandinterpretdata
Observationmethod,columneffectsmethod,ANOVA,computersoftware,plotting,ranking(magnitude&timeorder)
DOEexpert
ConductConfirmationTest
Estimatesofthemeanconfirmationexperimentflowchart
Product,process,andDOEexperts
ChecklistforDOE
Identifytheproperpeopletobeinvolvedintheprocess/productteamandtheleaderoftheinvestigationteam.
Describeinmeasurabletermstheproblem—howthepresentsituationdiffersfromwhatisdesired.
Obtainagreementfromthoseinvolvedon:
Scopeoftheinvestigation
Otherconstraintssuchastimeorresources
Obtainagreementonthegoaloftheinvestigation.
DetermineifstagingforDOEisappropriateorifotherresearch,suchasSPC,shouldbeaccomplishedfirst.
Usebrainstormingandproblem-solvingtoolstodeterminewhatfactorsmaybeimportantandwhichofthemcouldinteract.Totalagreementisrequiredtoeliminateany.
Choosearesponsethatrelatestotheunderlyingcauseandnotthesymptomandismeasurable,ifpossible.
Determinethetestproceduretobeusedandassessrepeatabilityandreproducibilityifapplicable.
Determinewhichofthefactorsarecontrollableandwhicharenot.
Determinethelevelstobetestedforeachfactor(experimentboldly).
Chooseordeveloptheappropriateexperimentaldesign.
Obtainfinalagreementfromallinvolvedpartiesonthe:
Goal
Approach
Allocationofroles
Experimentaldesign
Testprocedure
Timingoftheworkplan
Arrangetostageappropriateproduct,machinery,andtestingfacilities.
Monitortheexperimenttoensureproperproceduresarefollowed.
Usetheappropriatetechniquestoanalyzethedata.
Prepareasummaryoftheexperimentwithgraphicalportrayalofconclusionsandrecommendations.
QuestionstoAsktheSupplieraboutthePlan
Hastheproblembeenadequatelydefinedbasedonreportedeffects?
Wasthe8Dprocessfollowedtodetermineinterimactionsandidentifyprocesselementscontributingtotheproblem?
Issufficientstatisticaldata/evidenceavailabletonarrowdownvariablestothesignificantfew?Whatstatisticaltoolswereused?
IsthereanestablishedprocedureforapplyingDOEtechniquesandevaluatingtestresults?
Hasadequatescreeningbeenperformedtodetermineprocessalternativesagainst“must”criteriaand/oreliminateunacceptablealternatives?
Istheresufficientstatisticalevidenceforverifyinglevelsofprocessstabilityandcapabilityovertherecentpast?
Haveanyprocesschanges,asdefinedinthePPAPmanual,beenmadeintherecentpastincludingsubcontractorprocesses?
Hasacriteriamatrixbeencompletedwithweightingof“desirablecriteria”(allpotentialimprovements)inselectionofresponsevariables?
Note:ResponsevariablesmustbecustomerCriticaltoQuality(CTQ)characteristicsinaddressinggivenproblems.
Indefiningtheexperimentalprogram,whatcriteriawasusedinselectingtheindependentfactorsaffectingtheresponsevariable?
Wasappropriatescreeningdonetoeliminatefactorsnotjudgedashavingamajorimpactonresponsevariable?
Tofurtherrefinethelistoffactors,weretraditionaltestingmethods,suchasTrialandError,SpecialBatchRuns,PilotRuns,andPlannedComparisons,usedtoidentifythe2-3factorshavingthebiggestimpactontheresponsevariable?
Was/istheexperimentdesignedtotesttheimpactofthefactorstogetherratherthantestingonefactoratatime?
Wasanobjectivemeasurementsystemusingqualifiedtestorgagingmethodsselectedtomeasureresponses?
Addingup(Pool)StandardDeviations
Firstsquarethestandarddeviations(=thevariance)
Multiplyeachvariance(S2)byn-1(toweightthemproperly).
Thenaddthemanddividebythesumofthetwo(n-1)’s
Hereistheformula:
StepsforSimpleAnalysis
Checkdataforaccuracy.
Conductvisualanalysisofthedata.
Calculatetheaverageateachlevelforeachcolumn.
Calculatetheeffectsandhalf-effectsforeachcolumn.
PlottheaveragesfromStep#3.
GenerateaParetodiagramoftheabsolutevalueofeachhalf-effectfromStep#4.
Determinethe“importance”ofeachhalf-effect.*Whenappropriate,constructinteractionplotsfor“important”interactions.
Generateapredictionequationusing“important”half-effects.
Baseduponyourobjective,selectthebestsettingsforimportantfactors/interactions.
UsingthepredictionequationgeneratedinStep#8,predicttheresponse.Usethisvalueasatargetforverificationruns.
* IfusingsoftwaresuchasDOEKISS,usestatisticalsignificancetodetermineimportanthalf-effects(coefficients).
AdaptedfromtheAirAcademyAssociation
FactorialExperiments
BasicConcept
ThefirstfactorialexperimentsweredoneinEngland,beforeWWII,byR.A.Fisher.Thesewereagriculturalexperiments.Thepurposewastoseehowvariousfactorsaffectedcropgrowthbyapplying“treatments”to“blocks”ofland.
Example1:
Ablockoflandisdividedintofourparts.Twotypesoffertilizer(A1andA2)areappliedfromeasttowest,andtwotypesofpesticide(B1andB2)areappliedfromnorthtosouth.
PESTICIDE
B2
B1
2"
4"
6"
8"
A2
A1
FERTILIZER
Thenumbersinsidethesquaresrepresenttheaveragegrowthforeachsquareofland.
Evenwithoutfurtheranalysis,itseemsobviousthatfertilizerA2andpesticideB2wouldbegoodchoices.
Example1:(continued)
Todeterminetheeffectofeachfactor,calculatetheaverageforlevels1and2ofeachfactor,andthenfindthedifference.
FERTILIZER
A1
A2
B1
B2
PESTICIDE
AVE.
EFFECT
AVE.
EFFECT
3"
7"
4"
6"
4"
2"
2"
4"
6"
8"
InteractionEffects
Althoughtheeffectis4inchesandthepesticideeffectis2inches,acheckisneededtoseewhethertheseeffectsareadditive.Itispossiblethatwhenthebestfertilizerandthebestpesticidearecombined,theresultwillbe0inchesor12inchesinsteadof6inches.
Averagingdiagonallydoesthecheckforadditiveeffects.
Ifthefactoreffectsareadditive,thendiagonalaveragesarejustestimatesofthegrandaverageandtheinteractioneffectsshouldberelativelysmall.
Ifthereisalackofadditivity,itiscalledan“interaction.”
FERTILIZER
A1
A2
B1
B2
PESTICIDE
EFFECT
AB
5"
5"
0"
2"
4"
6"
8"
FractionalFactorials
Sofartherearesixaveragesfromonlyfoursetsofmeasurements.Thistremendousefficiencycanbeincreasedfurtherifwehappentoknowfromexperiencethatthefactorsareadditive.
Example2:
Assumethatthewateringschedulewillbeadditivewithfertilizerandpesticide.
Athirdfactorcanbeaddedbyputtingdifferentwateringschedulesonthediagonalsquares.
C1
C2
PESTICIDE
B2
B1
A2
A1
FERTILIZER
Theadditionalfactormightchangetheaverages,butifthehypothesisaboutadditivityiscorrect,thedifferenceintheaverages(effect)willstaythesameforfactorsAandB.
Thisiscalledafractionalfactorialbecausethereisnotenoughdatatoseparatealltheinteractionsthataretheoreticallypossible.
UseoftheResults
Thefactoreffectsascomputedrepresentthedifferencebetweentheresponseatthehighandlowlevelsofthefactors.Ifthefactoreffectisdividedbythedifferencebetweenthehighandlowlevelsofthefactors,theresultswillbethechangeintheresponseforacodedunitchangeinthefactor.
Themodelunderlyingthetwo-levelfactorialiswrittenintermsofcodedfactors.Themodelis:
+++…++
higherorderinteractions
Scaling
-1+σ+1
wherepredictedresponse
,
Notethatthecoefficientsofthemodelarehalfofthecorrespondingfactoreffects,sincethecodedlevels(+1)and(-1)differbytwounits.Intheexample,theequationis:
Someworkersprefertoomitthetermswithinsignificanteffects.
SignificanceofFactorEffects
Ifacomputedfactoreffectislarger(inabsolutevalue)thanthe“minimumsignificantfactoreffect,”theexperimentercansafelyconcludethatthetrueeffect?isanonzero.Theminimumsignificantfactoreffect[MIN]isderivedfromanappropriatet-testofsignificance.Theformulais:
where
[MIN] =minimumsignificantfactoreffect
t =thevalueofstudent’s“t”atthedesiredprobabilitylevelforthenumberofdegreesoffreedomintheestimates
m = thenumberof+signsinthecolumn(forfactoreffectcolumnsandforthemeancolumn)
k =thenumberofreplicatesofeachtrial
s = pooledstandarddeviationofasingleresponseobservation
Intheexample,theestimateofthestandarddeviationis4.4with11degreesoffreedom.Thus,theminimumsignificanteffectis:
Activity:TypicalThree-factortwo-levelexperiment
FractionalFactorialDesign
DesignandAnalysisWorksheet
*Averageofallresponsesincolumn(Y)
**Ignoringthreefactorhigherinteractions
Average+:AverageofallYvaluesassociatedwithapositivecoefficient(+)inarespectivecolumn
Average-:AverageofallYvaluesassociatedwithanegativecoefficient(-)inarespectivecolumn
LocationEffect[Difference]:(Average+)-(Average-)
VarianceEffects[Ratio]:LargerAverage/SmallerAverage
ProportionEffect[Difference]:(Average+)-(Average-)
DOEMethods
ClassicalVersusTaguchiMethods
Classicalmethodologyemphasizes:
Usingsequentialexperimentationtomodelprocessbehavioranddevelopempiricalprocessmodels(includingmodelingtheeffectof“noise”factors)
Predictingfutureprocessbehavior,includingoptimalsettingsfromempiricalmodels
Investigatingandisolatefactorsaffectingmeanandvariationindependently
Selectingexperimentaldesignfromconsiderationofthetrade-offsinrunningafractionofafullfactorialdesign
Forexamplea28-4designinvestigatestheeffectsof8factorsin16runs,andthetrade-offsareknownbeforerunningtheexperiment.Additionalexperimentationmayberequiredtoclearlyidentifytheeffectsofinteractions.
Taguchimethodologyemphasizes:
Robustdesign-searchingforthesetofconditionstoachieveoptimumbehavior
Minimizingthelossfunction-andeconomiclossduetorunningatuncontrolledconditions(noise)
Selectingexperimentaldesignfromexaminationoflineargraphs,whichallowsinvestigationofdesiredinteractioneffects,basedonprocessknowledge
Taguchi’sLossFunction
Taguchi’slossfunctionisatheoreticalquadraticrelationship.Taguchicontends,asproductcharacteristicsdeviatefromthenormalaim,lossesincreaseaccordingtoaparabolicfunction.Considerthefollowingdiagrams:
LSLUSLLSLUSL
All All All
TaguchiConcept
Target
TraditionalConcept
L
Bad Good Bad
Formula:L=K(Y–T)2
Where;
L=lossindollars T=targetvalue(normalaim)
K=costcoefficient Y=actualqualityvalue
Althoughtheequationcannotbeproven,itemphasizesthepointthataconsistentproductminimizesthetotalloss.Merelyattemptingtoproduceaproductwithinspecificationsdoesn’tpreventloss.Taguchifurtherdefinesqualityasthelossinflictedonsocietyaftertheshipmentofaproduct.
Example: Thespecificationsforaproductare6and14,withatargetof10.If20%oftheproductisproducedatexactly8,20%ontargetand60%atexactly11,whatisthelossfunction?
Solution: L=.2K(8-10)2+.6K(11-10)2
L=.8K+.6
L=1.4K
Optimalcostofquality
HistoricalView CurrentView
TaguchiMethod
Taguchi’smaincontributionishisconceptofrobustness.
Whendevelopingadesign,oraprocess,twotypesoffactorsareconsidered:
Controllablefactors(orDesignfactors)—InnerArray
Noisefactors(orEnvironmentalfactors)—OuterArray
Controllablefactorsarecanbesetandmaintained.
Noisefactorsareimpossible,difficult,ortooexpensivetocontrol.
TaguchiusesthestatisticcalledSignaltoNoiseRatio(S/N).Theprimarypurposeistomaximizeperformancewhileminimizingvariation.
TherearethreetypesofS/Nratios:
Maximizingtheresponse:
Minimizingtheresponse:
Targetresponse(yatoptimumvalueandminimizeS2)
TaguchiCake-BakingExample
TipsfromTaguchi
Thegoalofengineeringexperimentsistoeconomicallyimprovereal-worldproductsandprocesses,notscientificknowledge.
Useaconsistentmethodthat’sversatileenoughtoworkalmostanytime(orthogonalarrays).
Useasystemtoadaptthemethodtotheproblem,notviceversa(lineargraphs).
Studylotsofvariables,includingthe“noise”variablesthatthedesigndoesn’tcontrol.
Studyalimitednumberofinteractions,selectedbyengineeringknowledgeandexperience.
Chooseparametersthatminimizevariation,andalsomovethedesigntowardthetarget.
Predicttheresults.
Runaconfirmingexperimenttocheckreal-worldreproducibility.
Becarefulwhatyouoptimize.Selectaqualitycharacteristicthat’spracticalandinfluencesmarketshare.
Beforewecanbegin,wemustbeabletodefinequalityinmeasurableterms.
Signal-to-NoiseRatio
Tobesureofchoosingthebestfactorlevels,considerboththemeanresponselevelandthevariation.Toaccomplishthismoreeasily,itisusefultohaveasinglestatisticthatcorrelateswellwithquality,asmeasuredbythelossfunction.
Signal-to-noiseratio()iscommonlyusedintheelectronicsindustry.IthasbeenadaptedbyTaguchiforevaluatingexperiments.
Tomakethenumbersadditive,theyareusuallyconvertedtodecibels(d?).
Taguchihasdefinedawholegroupofstatisticshecallssignal-to-noiseratios.Ahighsignal-to-noiseratioforanexperimentalconditionmeanstherewasalargechangeinthedesireddirectionand/orareductioninvariation,i.e.,ahighsignal-to-noiseratiomeansbetterquality.
ControllingNoise
Noiseisthevariationoffactorsthataren’tnormallycontrolledbytheprocessorproduct.
OuterNoise
Temperature,humidity,customer,etc.
InnerNoise
Deteriorationwithtime,etc.
ProcessNoise
Betweenproduct,etc.
Robust
Notsensitivetonoise.Arobustdesignshowslittlefunctionalvariation,regardlessofnoise.
InnerandOuterArrays
Ifsomenoisefactorscanbetemporarilycontrolledduringtheexperiment,an“outerarray”issetuptodothis.Thepurposeistoensurethatthenoiseisproperlydistributedamongtheruns.Signal-to-noiseratioscanautomaticallyexploitnonlinearitiesandin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代收美金合同范本
- 2025年度新型環(huán)保混凝土材料購銷合同范本集錦
- 勞動(dòng)生產(chǎn)合同范例
- 喬木修剪合同范本
- 公司投資電影合同范例
- 個(gè)人外貿(mào)合同范例
- 2014家裝合同范例
- 信息資產(chǎn)安全合同范本
- 借用合同范例 英文
- 旅游業(yè)個(gè)性化旅游定制服務(wù)方案
- 酒店春節(jié)營銷方案
- 營銷管理方案中的定價(jià)策略與盈利模式
- 2024年西寧城市職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 2024年臨沂市高三一模(學(xué)業(yè)水平等級(jí)考試模擬試題)物理試卷
- 廣州獵德大橋三維曲面塔清水混凝土施工技術(shù)
- 我國糖尿病視網(wǎng)膜病變臨床診療指南2022解讀
- 高級(jí)茶藝師技能鑒定(協(xié)會(huì)版)備考題庫-下(多選、判斷題匯總)
- 特種設(shè)備作業(yè)人員體檢表(叉車)
- c30混凝土路面施工方案
- 加強(qiáng)師德師風(fēng)建設(shè)學(xué)校師德師風(fēng)警示教育講座培訓(xùn)課件
- 豬飼料購銷合同書
評(píng)論
0/150
提交評(píng)論