2022-2023學年山東省東營市墾利區(qū)八年級數(shù)學第二學期期末統(tǒng)考試題含解析_第1頁
2022-2023學年山東省東營市墾利區(qū)八年級數(shù)學第二學期期末統(tǒng)考試題含解析_第2頁
2022-2023學年山東省東營市墾利區(qū)八年級數(shù)學第二學期期末統(tǒng)考試題含解析_第3頁
2022-2023學年山東省東營市墾利區(qū)八年級數(shù)學第二學期期末統(tǒng)考試題含解析_第4頁
2022-2023學年山東省東營市墾利區(qū)八年級數(shù)學第二學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,則CD的長是()A.1 B.4 C.3 D.22.若=,則x的取值范圍是()A.x<3 B.x≤3 C.0≤x<3 D.x≥03.二次根式中字母的范圍為()A. B. C. D.4.如圖,點A是直線l外一點,在l上取兩點B、C,分別以點A、C為圓心,以BC、AB的長為半徑畫弧,兩弧交于點D,分別連接AD、CD,得到的四邊形ABCD是平行四邊形.根據(jù)上述作法,能判定四邊形ABCD是平行四邊形的條件是()A.兩組對邊分別平行的四邊形是平行四邊形B.一組對邊平行且相等的四邊形是平行四邊形C.兩組對角分別相等的四邊形是平行四邊形D.兩組對邊分別相等的四邊形是平行四邊形5.如圖,兩地被池塘隔開,小明先在直線外選一點,然后測量出,的中點,并測出的長為.由此,他可以知道、間的距離為()A. B. C. D.6.如圖,四邊形ABCD是菱形,AC=8,AD=5,DH⊥AB于點H,則DH的長為()A.24 B.10 C.4.8 D.67.若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)x的取值范圍是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣28.如圖,矩形ABCD中,AB=8,BC=4,把矩形ABCD沿過點A的直線AE折疊,點D落在矩形ABCD內(nèi)部的點D′處,則CD′的最小值是()A.4 B. C. D.9.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.10.若分式有意義,則x的取值范圍是A. B. C. D.11.下列各曲線中,不表示y是x的函數(shù)的是A. B. C. D.12.小華所在的九年級一班共有50名學生,一次體檢測量了全班學生的身高,由此求得該班學生的平均身高是1.65米,而小華的身高是1.66米,下列說法錯誤的是()A.1.65米是該班學生身高的平均水平B.班上比小華高的學生人數(shù)不會超過25人C.這組身高數(shù)據(jù)的中位數(shù)不一定是1.65米D.這組身高數(shù)據(jù)的眾數(shù)不一定是1.65米二、填空題(每題4分,共24分)13.已知不等式組的解集如圖所示(原點沒標出,數(shù)軸長度為1,黑點和圓圈均在整數(shù)的位置),則a的值為______.14.已知,則______15.等腰三角形中,兩腰上的高所在的直線所形成的銳角為35°,則等腰三角形的底角為___________16.利用計算機中“幾何畫板”軟件畫出的函數(shù)和的圖象如圖所示.根據(jù)圖象可知方程的解的個數(shù)為3個,若m,n分別為方程和的解,則m,n的大小關系是________.17.一個反比例函數(shù)(k≠0)的圖象經(jīng)過點P(-2,-1),則該反比例函數(shù)的解析式是________.18.如圖,等邊△ABC內(nèi)有一點O,OA=3,OB=4,OC=5,以點B為旋轉(zhuǎn)中心將BO逆時針旋轉(zhuǎn)60°得到線段,連接,下列結(jié)論:①可以看成是△BOC繞點B逆時針旋轉(zhuǎn)60°得到的;②點O與的距離為5;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤=6+.其中正確的結(jié)論有_____.(填正確序號)三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠C=90°,AC=16,BC=12,AB的垂直平分線分別交AB、AC于點D、E.求AB、EC的長.20.(8分)某校為了解學生“體育課外活動”的鍛煉效果,在期末結(jié)束時,隨機從學校1200名學生中抽取了部分學生的體育測試成績繪制了條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖提供的信息,回答下列問題.(1)這次抽樣調(diào)查共抽取了多少名學生的體育測試成績進行統(tǒng)計?(2)隨機抽取的這部分學生中男生體育成績的眾數(shù)是多少?女生體育成績的中位數(shù)是多少?(3)若將不低于40分的成績評為優(yōu)秀,請估計這1200名學生中成績?yōu)閮?yōu)秀的學生大約是多少?21.(8分)已知一次函數(shù),,,.(1)說明點在直線上;(2)當直線經(jīng)過點時,點時直線上的一點,若,求點的坐標.22.(10分)如圖是一個多邊形,你能否用一直線去截這個多邊形,使得到的新多邊形分別滿足下列條件:畫出圖形,把截去的部分打上陰影新多邊形內(nèi)角和比原多邊形的內(nèi)角和增加了.新多邊形的內(nèi)角和與原多邊形的內(nèi)角和相等.新多邊形的內(nèi)角和比原多邊形的內(nèi)角和減少了.將多邊形只截去一個角,截后形成的多邊形的內(nèi)角和為,求原多邊形的邊數(shù).23.(10分)某汽車運輸公司根據(jù)實際需要計劃購買大、中型兩種客車共20輛,已知大型客車每輛62萬元,中型客車每輛40萬元,設購買大型客車x(輛),購車總費用為y(萬元).(1)求y與x的函數(shù)關系式(不要求寫出自變量x的取值范圍);(2)若購買中型客車的數(shù)量少于大型客車的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.24.(10分)如圖,△ABC是以BC為底的等腰三角形,AD是邊BC上的高,點E、F分別是AB、AC的中點.(1)求證:四邊形AEDF是菱形;(2)如果四邊形AEDF的周長為12,兩條對角線的和等于7,求四邊形AEDF的面積S.25.(12分)在直角坐標系中,正方形OABC的邊長為8,連結(jié)OB,P為OB的中點.(1)直接寫出點B的坐標B(,)(2)點D從B點出發(fā),以每秒1個單位長度的速度在線段BC上向終點C運動,連結(jié)PD,作PD⊥PE,交OC于點E,連結(jié)DE.設點D的運動時間為秒.①點D在運動過程中,∠PED的大小是否發(fā)生變化?如果變化,請說明理由如果不變,求出∠PED的度數(shù)②連結(jié)PC,當PC將△PDE分成的兩部分面積之比為1:2時,求的值.26.四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.(1)求證:△ADE≌△ABF;(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點,按順時針方向旋轉(zhuǎn)度得到;(3)若BC=8,DE=6,求△AEF的面積.

參考答案一、選擇題(每題4分,共48分)1、C【解析】試題分析:先由∠BAC=90°,AD⊥BC,∠B=∠B證得△ABD∽△CBA,再根據(jù)相似三角形的性質(zhì)求得BD的長,即可求得結(jié)果.解:∵∠BAC=90°,AD⊥BC,∠B=∠B∴△ABD∽△CBA∴∵AB=2,BC=4∴,解得∴CD=BC-BD=3故選C.考點:相似三角形的判定和性質(zhì)點評:相似三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.2、C【解析】試題解析:根據(jù)題意得:解得:故選C.3、B【解析】

根據(jù)二次根式有意義的條件可得a?4≥0,解不等式即可.【詳解】解:由題意得:a?4≥0,解得:a≥4,故選:B.【點睛】此題主要考查了二次根式有意義的條件,關鍵是掌握二次根式中的被開方數(shù)是非負數(shù).4、D【解析】

根據(jù)題意可知,即可判斷.【詳解】由題意可知:,根據(jù)兩組對邊分別相等可以判定這個四邊形為平行四邊形.故選:D【點睛】本題考查了平行四邊形的判定,熟知兩組對邊分別相等的四邊形是平行四邊形是解題關鍵.5、D【解析】

根據(jù)三角形中位線定理解答.【詳解】解:∵點M,N分別是AC,BC的中點,

∴AB=2MN=13(m),

故選:C.【點睛】本題考查了三角形中位線定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是關鍵.6、C【解析】

運用勾股定理可求DB的長,再用面積法可求DH的長.【詳解】解:∵四邊形ABCD是菱形,AC=8,∴AC⊥DB,OA=4,∵AD=5,∴運用勾股定理可求OD=3,∴BD=1.∵×1×8=5DH,∴DH=4.8.故選C.【點睛】本題運用了菱形的性質(zhì)和勾股定理的知識點,運用了面積法是解決本題的關鍵.7、D【解析】

直接利用分式有意義的條件分析得出答案.【詳解】∵代數(shù)式在實數(shù)范圍內(nèi)有意義,∴x+2≠0,解得:x≠﹣2,故選D.【點睛】本題主要考查了分式有意義的條件,熟練掌握分母不為0時分式有意義是解題的關鍵.8、C【解析】

根據(jù)翻折的性質(zhì)和當點D'在對角線AC上時CD′最小解答即可.【詳解】解:當點D'在對角線AC上時CD′最小,

∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿過點A的直線AE折疊點D落在矩形ABCD內(nèi)部的點D處,

∴AD=AD'=BC=2,

在Rt△ABC中,AC===4,

∴CD'=AC-AD'=4-4,

故選:C.【點睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理,利用勾股定理求出AC的長度是解題的關鍵.9、B【解析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點睛】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題,學會用面積法解決有關線段問題,屬于中考??碱}型.10、C【解析】

根據(jù)分母不為0時分式有意義進行求解即可得.【詳解】由題意得:x-2≠0,解得:x≠2,故選C【點睛】本題考查了分式有意義的條件,熟知分母不為0時分式有意義是解題的關鍵.11、C【解析】

設在一個變化過程中有兩個變量x與y,對于x的每一個確定的值,y都有唯一的值與其對應,那么就說y是x的函數(shù),x是自變量.根據(jù)函數(shù)的意義即可求出答案.【詳解】顯然A、B、D選項中,對于自變量x的任何值,y都有唯一的值與之相對應,y是x的函數(shù);C選項對于x取值時,y都有2個值與之相對應,則y不是x的函數(shù);故選:C.【點睛】本題主要考查了函數(shù)的定義,在定義中特別要注意,對于x的每一個值,y都有唯一的值與其對應.12、B【解析】根據(jù)平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標.將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),中位數(shù)代表了這組數(shù)據(jù)值大小的“中點”,不易受極端值影響,但不能充分利用所有數(shù)據(jù)的信息,對每一項進行分析即可:A、1.65米是該班學生身高的平均水平,正確;B、因為小華的身高是1.66米,不是中位數(shù),所以班上比小華高的學生人數(shù)不會超過25人錯誤;C、這組身高數(shù)據(jù)的中位數(shù)不一定是1.65米,正確;D、這組身高數(shù)據(jù)的眾數(shù)不一定是1.65米,正確.故選B.二、填空題(每題4分,共24分)13、2【解析】

先解出關于x的不等式,由數(shù)軸上表示的解集求出的范圍即可.【詳解】解:,不等式組整理得:,由數(shù)軸得:,可得,解得:,故答案為2【點睛】此題考查了一元一次不等式組的整數(shù)解,以及在數(shù)軸上表示不等式的解集,熟練掌握運算法則是解本題的關鍵.14、34【解析】∵,∴=,故答案為34.15、17.5°或72.5°【解析】

分兩種情形畫出圖形分別求解即可解決問題.【詳解】解:①如圖,當∠BAC是鈍角時,由題意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,∴∠BAC=∠EAD=360°-90°-90°-35°=145°,∴∠ABC=;②如圖,當∠A是銳角時,由題意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,∴∠DHE=145°,∴∠A=360°-90°-90°-115°=35°,∴∠ABC=;故答案為:17.5°或72.5°.【點睛】本題考查等腰三角形的性質(zhì),四邊形內(nèi)角和定理等知識,解題的關鍵是用分類討論的思想思考問題,屬于中考??碱}型.16、【解析】

的解可看作函數(shù)與的交點的橫坐標的值,可看作函數(shù)與的交點的橫坐標的值,根據(jù)兩者橫坐標的大小可判斷m,n的大小.【詳解】解:作出函數(shù)的圖像,與函數(shù)和的圖象分別交于一點,所對的橫坐標即為m,n的值,如圖所示由圖像可得故答案為:【點睛】本題考查了函數(shù)與方程的關系,將方程的解與函數(shù)圖像相結(jié)合是解題的關鍵.17、【解析】把(-2,-1)代入,得,k=-1×(-2)=2,∴解析式為.18、①③⑤【解析】

如圖,首先證明△OBO′為等邊三角形,得到OO′=OB=4,故選項②錯誤;證明△ABO′≌△CBO,得到選項①正確;運用勾股定理逆定理證明△AOO′為直角三角形,求出∠AOB的度數(shù),得到選項③正確;運用面積公式求出四邊形AOBO′的面積,可判斷選項④錯誤;將△AOB繞A點逆時針旋轉(zhuǎn)60°至△AO″C,可得△AOO″是邊長為3的等邊三角形,△COO″是邊長為3,4,5的直角三角形,再根據(jù)S△AOC+S△AOB=S四邊形AOCO″=S△COO″+S△AOO″進行計算即可判斷選項⑤正確.【詳解】解:如下圖,連接OO′,∵△ABC為等邊三角形,∴∠ABC=60°,AB=CB;由題意得:∠OBO′=60°,OB=O′B,∴△OBO′為等邊三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴選項②錯誤;在△ABO′與△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,可以看成是△BOC繞點B逆時針旋轉(zhuǎn)60°得到的,∴選項①正確;在△AOO′中,∵32+42=52,∴△AOO′為直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴選項③正確;∵S四邊形AOBO′=×42×sin60°+×3×4=4+6,∴選項④錯誤;如下圖,將△AOB繞A點逆時針旋轉(zhuǎn)60°至△AO″C,連接OO″,同理可得,△AOO″是邊長為3的等邊三角形,△COO″是邊長為3,4,5的直角三角形,∴S△AOC+S△AOB=S四邊形AOCO″=S△COO″+S△AOO″=×3×4+×32×sin60°=6+.故⑤正確;故答案為:①③⑤.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)、三角形全等的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理的逆定理,熟練掌握旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理的逆定理的應用是解題的關鍵.三、解答題(共78分)19、AB=20,EC=【解析】

根據(jù)勾股定理即可求出AB的長;連接BE,根據(jù)線段垂直平分線的性質(zhì)可得AE=BE,然后設CE=x,由勾股定理可得關于x的方程,繼而求得答案.【詳解】解:在Rt△ABC中,∵∠C=90°,AC=16,BC=12,∴AB==20;連接BE,如圖,∵AB的垂直平分線分別交AB、AC于點D、E,∴AE=BE,設EC=x,則BE=AE=16-x,在Rt△EBC中,∵∠C=90°,BC=12,∴,解得:x=,即EC=.【點睛】此題考查了線段垂直平分線的性質(zhì)以及勾股定理,難度不大,注意掌握數(shù)形結(jié)合思想與方程思想的應用.20、(1)100名;(2)男生體育成績的眾數(shù)40分;女生體育成績的中位數(shù)是40分;(3)756名.【解析】

(1)將條形圖中各分數(shù)的人數(shù)相加即可得;(2)根據(jù)眾數(shù)和中位數(shù)的定義求解可得;(3)總?cè)藬?shù)乘以樣本中優(yōu)秀人數(shù)所占比例可得.【詳解】解:(1)抽取的學生總?cè)藬?shù)為5+7+10+15+15+12+13+10+8+5=100(名);(2)由條形圖知隨機抽取的這部分學生中男生體育成績的眾數(shù)40分,∵女生總?cè)藬?shù)為7+15+12+10+5=49,其中位數(shù)為第25個數(shù)據(jù),∴女生體育成績的中位數(shù)是40分;(3)估計這1200名學生中成績?yōu)閮?yōu)秀的學生大約是1200×=756(名).【點睛】本題考查的是條形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).除此之外,本題也考查了平均數(shù)、中位數(shù)、眾數(shù)的認識.21、(1)詳見解析;(2)點坐標為,(,5).【解析】

(1)將x=2代入y=kx+3-2k,求出y=3,由此即可證出點M(2,3)在直線y=kx+3-2上;

(2)根據(jù)點C的坐標利用待定系數(shù)法求出此時直線的解析式,由此可設點P的坐標為(m,m),再根據(jù)S△BCP=2S△ABC,即可得出關于m的含絕對值符號的一元一次方程,解方程求出m的值,將其代入P點坐標即可得出結(jié)論.【詳解】證明:∵y=kx+3-2k,

∴當x=2時,y=2k+3-2k=3,

∴點M(2,3)在直線y=kx+3-2k上;

(2)解:將點C(-2,-3)代入y=kx+3-2k,

得:-3=-2k+3-2k,解得:k=,

此時直線CM的解析式為y=x.

設點P的坐標為(m,m).

∵S△BCP=BC?|yP-yB|,S△ABC=BC?|yA-yC|,S△BCP=2S△ABC,

∴|m-(-3)|=2×[1-(-3)],

解得:m1=或m2=,

∴點P的坐標為(,-11)或(,5).【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、三角形的面積以及待定系數(shù)法求函數(shù)解析式,解題的關鍵是:(1)將x=2代入函數(shù)解析式,正確計算求出y的值;(2)根據(jù)面積間的關系找出關于m含絕對值符號的一元一次方程.本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)點的坐標利用待定系數(shù)法求出函數(shù)解析式是關鍵.22、(1)作圖見解析;(2)15,16或1.

【解析】

(1)①過相鄰兩邊上的點作出直線即可求解;②過一個頂點和相鄰邊上的點作出直線即可求解;③過相鄰兩邊非公共頂點作出直線即可求解;(2)根據(jù)多邊形的內(nèi)角和公式先求出新多邊形的邊數(shù),然后再根據(jù)截去一個角的情況進行討論.【詳解】如圖所示:設新多邊形的邊數(shù)為n,則,解得,若截去一個角后邊數(shù)增加1,則原多邊形邊數(shù)為15,若截去一個角后邊數(shù)不變,則原多邊形邊數(shù)為16,若截去一個角后邊數(shù)減少1,則原多邊形邊數(shù)為1,故原多邊形的邊數(shù)可以為15,16或1.【點睛】本題主要考查了多邊形的內(nèi)角和公式,注意要分情況進行討論,避免漏解.23、1);(2)購買大型客車11輛,中型客車9輛時,購車費用最省,為1042萬元.【解析】試題分析:(1)根據(jù)購車的數(shù)量以及價格根據(jù)總費用直接表示出等式;(2)根據(jù)購買中型客車的數(shù)量少于大型客車的數(shù)量,得出y=22x+800,中x的取值范圍,再根據(jù)y隨著x的增大而增大,得出x的值.試題解析:(1)因為購買大型客車x輛,所以購買中型客車輛..(2)依題意得<x.解得x>1.∵,y隨著x的增大而增大,x為整數(shù),∴當x=11時,購車費用最省,為22×11+800="1"042(萬元).此時需購買大型客車11輛,中型客車9輛.答:購買大型客車11輛,中型客車9輛時,購車費用最省,為1042萬元.考點:一次函數(shù)的應用24、(1)證明見解析;(2).【解析】試題分析:(1)利用直角三角形斜邊中線是斜邊一半,求得DE=AE=AF=DF,所以AEDF是菱形.(2)由(1)得,AEDF是菱形,求得菱形對角線乘積的一半,求面積.試題解析:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,點E、F分別是AB、AC的中點,∴AE=AF,∴AE=AF=DE=DF,∴四邊形AEDF是菱形.(2)如圖,∵菱形AEDF的周長為12,∴AE=3,設EF=x,AD=y,則x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面積S=xy=.25、(1)8,8;(2)①∠PED的大小不變,∠PED=45°;②t的值為:秒或秒.【解析】

(1)根據(jù)正方形的邊長為8和正方形的性質(zhì)寫出點B的坐標;

(2)①如圖1,作輔助線,證明四邊形PMCN是正方形,再證明△DPN≌△EPM(ASA),可得△DPE是等腰直角三角形,可得結(jié)論;

②分兩種情況:當PC將△PDE分成的兩部分面積之比為1:2時,即G是ED的三等分點,根據(jù)面積法可知:EC與CD的比為1:2或2:1,列方程可得結(jié)論.【詳解】解:(1)∵正方形OABC的邊長為8,

∴B(8,8);

故答案為:8,8;

(2)①∠PED的大小不變;理由如下:

作PM⊥OC于M,PN⊥CB于N,如圖1所示:

∵四邊形OABC是正方形,

∴OC⊥BC,

∴∠MCN=∠PMC=∠PNC=90°,

∴四邊形PMCN是矩形,

∵P是OB的中點,

∴N、M分別是BC和OC的中點,

∴MC=NC,

∴矩形PMCN是正方形,

∴PM=PN,∠MPN=90°,

∵∠DPE=90°,

∴∠DPN=∠EPM,

∵∠PND=∠PME=90°,

∴△DPN≌△EPM(ASA),

∴PD=PE,∴△DPE是等腰直角三角形,

∴∠PED=45°;

②如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論