![華師大版九年級(jí)下第27章圓2正多邊形和圓【市一等獎(jiǎng)】_第1頁](http://file4.renrendoc.com/view/2a8907eda867971318d7d7d0c66c8c2c/2a8907eda867971318d7d7d0c66c8c2c1.gif)
![華師大版九年級(jí)下第27章圓2正多邊形和圓【市一等獎(jiǎng)】_第2頁](http://file4.renrendoc.com/view/2a8907eda867971318d7d7d0c66c8c2c/2a8907eda867971318d7d7d0c66c8c2c2.gif)
![華師大版九年級(jí)下第27章圓2正多邊形和圓【市一等獎(jiǎng)】_第3頁](http://file4.renrendoc.com/view/2a8907eda867971318d7d7d0c66c8c2c/2a8907eda867971318d7d7d0c66c8c2c3.gif)
![華師大版九年級(jí)下第27章圓2正多邊形和圓【市一等獎(jiǎng)】_第4頁](http://file4.renrendoc.com/view/2a8907eda867971318d7d7d0c66c8c2c/2a8907eda867971318d7d7d0c66c8c2c4.gif)
![華師大版九年級(jí)下第27章圓2正多邊形和圓【市一等獎(jiǎng)】_第5頁](http://file4.renrendoc.com/view/2a8907eda867971318d7d7d0c66c8c2c/2a8907eda867971318d7d7d0c66c8c2c5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
正多邊形和圓課題正多邊形和圓授課人教學(xué)目標(biāo)知識(shí)技能使學(xué)生經(jīng)歷正多邊形的形成過程,了解正多邊形的有關(guān)概念,掌握用等分圓周畫圓的內(nèi)接正多邊形的方法;能應(yīng)用正多邊形的邊角關(guān)系進(jìn)行有關(guān)計(jì)算.?dāng)?shù)學(xué)思考使學(xué)生豐富對(duì)正多邊形的認(rèn)識(shí),通過設(shè)計(jì)圖案,發(fā)展學(xué)生的形象思維.問題解決使學(xué)生會(huì)等分圓周,利用等分圓周的方法構(gòu)造正多邊形,并會(huì)設(shè)計(jì)圖案,發(fā)展學(xué)生的實(shí)踐能力和創(chuàng)新精神.情感態(tài)度通過等分圓周、構(gòu)造正多邊形等實(shí)踐活動(dòng),使學(xué)生在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),建立自信心.教學(xué)重點(diǎn)理解掌握正多邊形的半徑、中心角、邊心距、邊等名稱及其求法.教學(xué)難點(diǎn)探索正多邊形和圓的關(guān)系.授課類型新授課課時(shí)教具多媒體教學(xué)活動(dòng)教學(xué)步驟師生活動(dòng)設(shè)計(jì)意圖回顧(多媒體演示)問題:1.切線長定理的內(nèi)容是什么?請(qǐng)畫出一個(gè)三角形的內(nèi)切圓.2.請(qǐng)畫出垂徑定理的基本圖形,并說明其中的數(shù)量關(guān)系.3.什么是正多邊形?你對(duì)正多邊形有多少了解?師生活動(dòng):教師引導(dǎo)學(xué)生進(jìn)行解答,并適時(shí)做出補(bǔ)充和講解.回顧以前學(xué)習(xí)過的且對(duì)本節(jié)課的學(xué)習(xí)有基礎(chǔ)作用的知識(shí),為學(xué)習(xí)新知打下基礎(chǔ).活動(dòng)一:創(chuàng)設(shè)情境導(dǎo)入新課【課堂引入】(課件展示)觀看下列美麗的圖案,提出問題:圖27-4-4(1)你能從這些美麗的圖案中找出正多邊形嗎?(2)你知道正多邊形和圓有什么關(guān)系嗎?怎樣作出一個(gè)正多邊形呢?師生活動(dòng):教師引導(dǎo)學(xué)生觀察、思考,學(xué)生討論、交流,發(fā)表各自見解.教師關(guān)注:①學(xué)生能否從圖案中找出正多邊形;②學(xué)生能否從圖案中發(fā)現(xiàn)正多邊形和圓的關(guān)系.創(chuàng)設(shè)情境,使學(xué)生主動(dòng)將圓的知識(shí)與正多邊形聯(lián)系起來,激發(fā)學(xué)生探索的熱情,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.活動(dòng)二:實(shí)踐探究交流新知【探究新知】問題1:將一個(gè)圓分為五等份,依次連結(jié)各分點(diǎn)得到一個(gè)五邊形,這個(gè)五邊形一定是正多邊形嗎?如果是,請(qǐng)你證明這個(gè)結(jié)論.師生活動(dòng):教師演示作圖并提示學(xué)生從正多邊形的定義入手證明,引導(dǎo)學(xué)生觀察、分析,教師指導(dǎo)學(xué)生完成證明過程.教師在學(xué)生思考、交流的基礎(chǔ)上板書證明過程:圖27-4-5如圖27-4-5,∵eq\o(AB,\s\up8(︵))=eq\o(BC,\s\up8(︵))=eq\o(CD,\s\up8(︵))=eq\o(DE,\s\up8(︵))=eq\o(EA,\s\up8(︵)),∴AB=BC=CD=DE=EA.∵eq\o(BAD,\s\up8(︵))=eq\o(CAE,\s\up8(︵))=3eq\o(AB,\s\up8(︵)),∴∠C=∠D.同理可證:∠A=∠B=∠C=∠D=∠E,∴五邊形ABCDE是正五邊形.∵A,B,C,D,E在⊙O上,∴五邊形ABCDE是圓內(nèi)接正五邊形.活動(dòng)二:實(shí)踐探究交流新知教師小結(jié):圓心O到各邊的距離都相等,記為r,那么以點(diǎn)O為圓心、r為半徑的圓就與正五邊形的各條邊都相切,它就是正五邊形的內(nèi)切圓.歸納:任何一個(gè)正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓.這兩個(gè)圓有公共的圓心,稱其為正多邊形的中心.外接圓的半徑叫做正多邊形的半徑,內(nèi)切圓的半徑叫做正多邊形的邊心距.正多邊形每一條邊所對(duì)的外接圓的圓心角都相等,叫做正多邊形的中心角.問題2:如果將圓n等分,依次連結(jié)各分點(diǎn)得到一個(gè)n邊形,這個(gè)n邊形一定是正n邊形.師生活動(dòng):學(xué)生思考,然后小組內(nèi)交流、討論,教師根據(jù)學(xué)生的回答進(jìn)行總結(jié).教師重點(diǎn)關(guān)注:學(xué)生能否按照證明圓內(nèi)接正五邊形的方法證明圓內(nèi)接正n邊形.問題3:各邊相等的圓內(nèi)接多邊形是正多邊形嗎?各角相等的圓內(nèi)接多邊形呢?請(qǐng)說明理由.師生活動(dòng):學(xué)生討論,思考回答,教師進(jìn)行總結(jié)講解.教師重點(diǎn)關(guān)注:學(xué)生能否利用正多邊形的定義進(jìn)行判斷;學(xué)生能否由圓內(nèi)接正多邊形的各邊相等得到弦相等及弦所對(duì)的弧相等;學(xué)生能否舉反例說明各角相等的圓內(nèi)接多邊形不一定是正多邊形.【應(yīng)用新知】活動(dòng)一:教師演示課件,根據(jù)正多邊形的中心、半徑、中心角、邊心距等概念進(jìn)行相關(guān)計(jì)算.教師提出問題:(1)正多邊形的中心角怎么計(jì)算?(2)邊長a,半徑R,邊心距r有什么關(guān)系?(3)正多邊形的面積如何計(jì)算?圖27-4-6師生活動(dòng):學(xué)生在教師的引導(dǎo)下,結(jié)合圖形,得到結(jié)論:正n邊形的中心角等于360°÷n,(eq\f(a,2))2+r2=R2.活動(dòng)二:提出問題:如何把一個(gè)圓進(jìn)行n等分呢?師生活動(dòng):學(xué)生小組內(nèi)討論,得到:把中心角n等分,則弧被n等分,即可得到正多邊形.教師引導(dǎo)分析:①正方形的中心角為90°,說明兩條半徑互相垂直;②正六邊形的中心角為60°,說明兩條半徑和一邊構(gòu)成等邊三角形.1.將結(jié)論由特殊推廣到一般,符合學(xué)生的認(rèn)知規(guī)律,并交給學(xué)生一種研究問題的方法.2.教學(xué)中,使學(xué)生明確圓內(nèi)接正多邊形必須滿足各邊相等,各角相等,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膽B(tài)度和思維批判性.3.通過學(xué)生探索、歸納,教給學(xué)生等分圓周的方法,尤其是尺規(guī)作正方形、正六邊形.活動(dòng)三:開放訓(xùn)練體現(xiàn)應(yīng)用【應(yīng)用舉例】例1如圖27-4-7,有一個(gè)亭子,它的地基是邊心距為2eq\r(3)的正六邊形,求地基的周長和面積(結(jié)果保留根號(hào)).圖27-4-7解:∵六邊形ABCDEF是正六邊形,∴∠BOC=eq\f(1,6)×360°=60°,而OB=OC,OP⊥BC,∴△OBC是等邊三角形,∠BOP=∠COP=30°,∴BC=OB,cos30°=eq\f(OP,OB),而OP=2eq\r(3),∴BC=OB=4,∴該地基的周長=4×6=24,面積=6×eq\f(1,2)×4×2eq\r(3)=24eq\r(3).師生活動(dòng):教師引導(dǎo)學(xué)生畫出圖形,進(jìn)行分析,完成例題的解答.教師總結(jié):正六邊形中由兩條半徑和邊組成的三角形為等邊三角形,所以半徑與邊相等,所以正六邊形的周長為半徑的6倍;正六邊形的面積分割為六個(gè)全等的等邊三角形,先求每個(gè)等邊三角形的面積再乘6即可.變式訓(xùn)練如圖27-4-8,正六邊形螺帽的邊長是2cm,這個(gè)扳手的開口a的值應(yīng)是(A)A.2eq\r(3)cm\r(3)cm圖27-4-8\f(2\r(3),3)cmD.1cm學(xué)生在教師的引導(dǎo)下,將正多邊形的中心、半徑、中心角、邊心距等集中在一個(gè)三角形中研究,可以利用勾股定理進(jìn)行計(jì)算,進(jìn)而能夠求得正多邊形的所有量.教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,將多邊形問題轉(zhuǎn)化為三角形問題.【拓展提升】例2已知半徑為R的⊙O,用多種工具、多種方法作出圓內(nèi)接正三角形.師生活動(dòng):學(xué)生先獨(dú)立解決問題,然后小組中討論,鼓勵(lì)學(xué)生勇于探索實(shí)踐,然后與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注學(xué)生的解題過程.圖27-4-9(續(xù)表)活動(dòng)三:開放訓(xùn)練體現(xiàn)應(yīng)用方法一:①用量角器畫圓心角∠AOB=120°,∠BOC=120°;②連結(jié)AB,BC,CA,則△ABC為圓內(nèi)接正三角形.方法二:①用量角器畫圓心角∠BOC=120°;②在⊙O上用圓規(guī)截取弧AB=弧BC;③連結(jié)AC,BC,AB,則△ABC為圓內(nèi)接正三角形.方法三:①作直徑AD;②以點(diǎn)D為圓心,OD長為半徑畫弧,交⊙O于點(diǎn)B,C;③連結(jié)AB,BC,CA,則△ABC為圓內(nèi)接正三角形.例3如圖27-4-10,AB,CD是⊙O中互相垂直的兩條直徑,以點(diǎn)A為圓心,OA為半徑畫弧,與⊙O交于E、F兩點(diǎn).(1)求證:AE是正六邊形的一邊;(2)請(qǐng)?jiān)趫D上繼續(xù)畫出這個(gè)正六邊形.解:(1)證明:連結(jié)OE,OF,AF,∵AE=OA=OE,∴△AOE是等邊三角形,故∠OAE=60°,同理可證:△OAF是等邊三角形.∴∠OAF=60°,∴AE=AF,且∠EAF=∠OAE+∠OAF=120°,∴AE是正六邊形的一邊.圖27-4-10(2)以B為圓心,AE長為半徑畫弧,與⊙O交于點(diǎn)G,H,然后順次將A,E,G,B,H和F連結(jié)起來就得到正六邊形.及時(shí)獲知學(xué)生對(duì)所學(xué)知識(shí)的掌握情況,落實(shí)本課的學(xué)習(xí)目標(biāo).分層設(shè)計(jì)可讓不同程度的同學(xué)最大限度地發(fā)揮他們的潛力,樹立學(xué)好數(shù)學(xué)的信心.活動(dòng)四:課堂總結(jié)反思【達(dá)標(biāo)測(cè)評(píng)】1.若正六邊形的邊長為6,則其外接圓半徑與內(nèi)切圓半徑的大小分別為(B)A.6,3eq\r(2)B.6,3eq\r(3)C.3eq\r(3),6D.6,32.如圖27-4-11,在⊙O中,OA=AB,OC⊥AB,交⊙O于點(diǎn)C,那么下列結(jié)論錯(cuò)誤的是(A)A.∠BAC=30°\o(AC,\s\up8(︵))=eq\o(BC,\s\up8(︵))C.線段OB的長等于圓內(nèi)接正六邊形的半徑D.弦AC的長等于圓內(nèi)接正十二邊形的邊長圖27-4-11圖27-4-123.如圖27-4-12,在平面直角坐標(biāo)系中,邊長為6的正六邊形ABCDEF的對(duì)稱中心與原點(diǎn)O重合,點(diǎn)A在x軸上,點(diǎn)B在反比例函數(shù)y=eq\f(k,x)位于第一象限的圖象上,則k的值為__9_eq\r(3)__.(續(xù)表)活動(dòng)四:課堂總結(jié)反思4.如圖27-4-13,已知正五邊形ABCDE,AF∥CD交DB的延長線于點(diǎn)F,交DE的延長線于點(diǎn)G.(1)寫出圖中所有的等腰三角形;(2)求證:∠G=2∠F.圖27-4-13解:(1)∵五邊形ABCD是正五邊形,∴AB=BC=CD=DE=EA,∠ABC=∠BCD=∠CDE=∠DEA=∠EAB=108°,∵DC=BC,∴△CDB是等腰三角形.∵∠C=108°,∴∠1=∠CBD=36°.∵AF∥CD,∴∠F=∠1=36°.∵∠ABD=∠ABC-∠CBD=108°-36°=72°,∴∠F=∠BAF=36°,∴△BAF是等腰三角形,進(jìn)而可得∠GEA=∠G=∠2=72°,∴△FDG,△AEG是等腰三角形,故等腰三角形有△BCD,△ABF,△FDG,△AEG.(2)證明:∵五邊形ABCDE是正五邊形,∴∠C=∠CDE=108°,CD=CB,得∠1=36°,∴∠2=108°-36°=72°.又∵AF∥CD,∴∠F=∠1=36°,故∠G=180°-∠2-∠F=180°-72°-36°=72°=2∠F.師生活動(dòng):學(xué)生完成達(dá)標(biāo)測(cè)評(píng)后,教師進(jìn)行個(gè)別提問,并指導(dǎo)學(xué)生解釋做題理由和做題方法,使學(xué)生在個(gè)別思考解答的基礎(chǔ)上,共同交流、形成共識(shí)、確定答案.設(shè)置達(dá)標(biāo)測(cè)評(píng)的目的是使學(xué)生加深對(duì)所學(xué)知識(shí)的理解和運(yùn)用,在問題的選擇上以基礎(chǔ)為主、疑難點(diǎn)突出,增加開放型、探究型問題,使學(xué)生思維得到拓展、能力得以提升.【課堂小結(jié)】(1)談一談你在本節(jié)課中有哪些收獲?哪些進(jìn)步?(2)學(xué)習(xí)本節(jié)課后,還存在哪些困惑?布置作業(yè):教材P67習(xí)題第1,2,3題.鞏固、梳理所學(xué)知識(shí).對(duì)學(xué)生進(jìn)行鼓勵(lì)、進(jìn)行思想教育.【知識(shí)網(wǎng)絡(luò)】提綱挈領(lǐng),重點(diǎn)突出.(續(xù)表)活動(dòng)四:課堂總結(jié)反思【教學(xué)反思】①[授課流程反思]在探究新知的過程中,使學(xué)生認(rèn)識(shí)到事物之間是普遍聯(lián)系的,是可以相互轉(zhuǎn)化的,并培養(yǎng)和訓(xùn)練學(xué)生綜合運(yùn)用知識(shí)和解決實(shí)際問題的意識(shí),滲透數(shù)形結(jié)合的思想和方法.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人貨物運(yùn)輸協(xié)議模板(2篇)
- 2025年個(gè)人房屋設(shè)計(jì)裝修合同(4篇)
- 2025年儀器銷售合同標(biāo)準(zhǔn)版本(4篇)
- 2025年二手車車輛轉(zhuǎn)讓合同簡單版(2篇)
- 專題01 集合(八大題型+模擬精練)(解析版)
- 2025年產(chǎn)品推廣協(xié)議書維生素(三篇)
- 2025年二手房的個(gè)人購房合同模板(2篇)
- 臨時(shí)倉儲(chǔ)配送合同模板
- 商業(yè)保理融資居間合同
- 個(gè)體餐飲店裝修協(xié)議
- 廚房食材補(bǔ)貨方案
- 2024年重慶市中考數(shù)學(xué)試卷(AB合卷)【附答案】
- 2024年安徽省高校分類考試對(duì)口招生語文試卷真題(含答案)
- DB43-T 2142-2021學(xué)校食堂建設(shè)與食品安全管理規(guī)范
- 宏觀利率篇:債券市場(chǎng)研究分析框架
- 橋梁頂升移位改造技術(shù)規(guī)范
- 六年級(jí)語文(上冊(cè))選擇題集錦
- 介紹人提成方案
- 天津在津居住情況承諾書
- PHOTOSHOP教案 學(xué)習(xí)資料
- 2012年安徽高考理綜試卷及答案-文檔
評(píng)論
0/150
提交評(píng)論