2022屆陜西省西安市西北大附中中考數(shù)學考前最后一卷含解析_第1頁
2022屆陜西省西安市西北大附中中考數(shù)學考前最后一卷含解析_第2頁
2022屆陜西省西安市西北大附中中考數(shù)學考前最后一卷含解析_第3頁
2022屆陜西省西安市西北大附中中考數(shù)學考前最后一卷含解析_第4頁
2022屆陜西省西安市西北大附中中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022屆陜西省西安市西北大附中中考數(shù)學考前最后一卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣12.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.3.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m4.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π5.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結(jié)果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設(shè)騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.6.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現(xiàn)已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.7.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設(shè)該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4408.下列運算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a9.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α10.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.12.計算的結(jié)果等于_____________.13.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.14.如圖,在5×5的正方形(每個小正方形的邊長為1)網(wǎng)格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)15.分解因式:4a3b﹣ab=_____.16.分解因式:x2y﹣xy2=_____.17.不等式組的解集是__.三、解答題(共7小題,滿分69分)18.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?19.(5分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小20.(8分)﹣(﹣1)2018+﹣()﹣121.(10分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F(xiàn),連接OF交AD于點G.求證:BC是⊙O的切線;設(shè)AB=x,AF=y(tǒng),試用含x,y的代數(shù)式表示線段AD的長;若BE=8,sinB=,求DG的長,22.(10分)在一次數(shù)學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.23.(12分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長.24.(14分)已知函數(shù)的圖象與函數(shù)的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結(jié)合函數(shù)圖象,直接寫出實數(shù)的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.2、B【解析】

連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點睛】本題主要考查扇形的面積計算,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.3、D【解析】

根據(jù)三角形的中位線定理即可得到結(jié)果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點睛】本題考查的是三角形的中位線,解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.4、D【解析】

根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質(zhì)及面積的計算.5、C【解析】試題分析:設(shè)騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.6、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.7、A【解析】

根據(jù)題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系進行列方程.8、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.9、D【解析】

利用旋轉(zhuǎn)不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,

∴∠BAC=∠DAE=α,∠B=∠D,

∵∠ACB=∠DCF,

∴∠CFD=∠BAC=α,

故A,B,C正確,

故選D.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考??碱}型.10、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關(guān)鍵在于對知識點的理解和把握.二、填空題(共7小題,每小題3分,滿分21分)11、120°【解析】

設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.12、a3【解析】試題解析:x5÷x2=x3.考點:同底數(shù)冪的除法.13、或﹣.【解析】

試題分析:當點F在OB上時,設(shè)EF交CD于點P,可求點P的坐標為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點睛】考點:動點問題.14、答案不唯一,如:AD【解析】

根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點睛】本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.15、ab(2a+1)(2a-1)【解析】

先提取公因式再用公式法進行因式分解即可.【詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【點睛】此題主要考查因式分解單項式,解題的關(guān)鍵是熟知因式分解的方法.16、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).17、2≤x<1【解析】

分別解兩個不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點睛】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取小;大小小大中間找;大大小小找不到.三、解答題(共7小題,滿分69分)18、(1)40(2)126°,1(3)940名【解析】

(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總?cè)藬?shù)乘以對應的百分比即可求解.【詳解】(1)學生總數(shù)是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數(shù)是:200×25%=1.;(3)樣本D、E兩組的百分數(shù)的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優(yōu)秀的學生有940名.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.19、(1)∠P=50°;(2)∠P=45°.【解析】

(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角形內(nèi)角和定理計算即可;

(2)連接AB、AD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到AB⊥PA,根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點∴AB⊥PA,∴∠P=∠ABP=45°.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于過切點的半徑是解題的關(guān)鍵.20、-1.【解析】

直接利用負指數(shù)冪的性質(zhì)以及算術(shù)平方根的性質(zhì)分別化簡得出答案.【詳解】原式=﹣1+1﹣3=﹣1.【點睛】本題主要考查了實數(shù)運算,正確化簡各數(shù)是解題的關(guān)鍵.21、(1)證明見解析;(2)AD=;(3)DG=.【解析】

(1)連接OD,由AD為角平分線得到一對角相等,再由等邊對等角得到一對角相等,等量代換得到內(nèi)錯角相等,進而得到OD與AC平行,得到OD與BC垂直,即可得證;

(2)連接DF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對的圓周角,進而得到三角形ABD與三角形ADF相似,由相似得比例,即可表示出AD;

(3)連接EF,設(shè)圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由直徑所對的圓周角為直角,得到EF與BC平行,得到sin∠AEF=sinB,進而求出DG的長即可.【詳解】(1)如圖,連接OD,∵AD為∠BAC的角平分線,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC為圓O的切線;(2)連接DF,由(1)知BC為圓O的切線,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB?AF=xy,則AD=;(3)連接EF,在Rt△BOD中,sinB=,設(shè)圓的半徑為r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直徑,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE?sin∠AEF=10×=,∵AF∥OD,∴,即DG=AD,∴AD=,則DG=.【點睛】圓的綜合題,涉及的知識有:切線的判定與性質(zhì),相似三角形的判定與性質(zhì),銳角三角函數(shù)定義,勾股定理,以及平行線的判定與性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.22、這種測量方法可行,旗桿的高為21.1米.【解析】分析:根據(jù)已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質(zhì)得出即可.詳解:這種測量方法可行.理由如下:設(shè)旗桿高AB=x.過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論