時三角形的有關(guān)概念及三邊關(guān)系_第1頁
時三角形的有關(guān)概念及三邊關(guān)系_第2頁
時三角形的有關(guān)概念及三邊關(guān)系_第3頁
時三角形的有關(guān)概念及三邊關(guān)系_第4頁
時三角形的有關(guān)概念及三邊關(guān)系_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2.1三角形第2章三角形第1課時三角形的有關(guān)概念及三邊關(guān)系目前一頁\總數(shù)二十六頁\編于八點情境引入學習目標1.認識三角形并會用幾何語言表示三角形,了解三角形分類.2.掌握三角形的三邊關(guān)系.(難點)3.運用三角形三邊關(guān)系解決有關(guān)的問題.(重點)目前二頁\總數(shù)二十六頁\編于八點導入新課目前三頁\總數(shù)二十六頁\編于八點埃及金字塔目前四頁\總數(shù)二十六頁\編于八點氨氣分子結(jié)構(gòu)示意圖飛機機翼目前五頁\總數(shù)二十六頁\編于八點問題:(1)從古埃及的金字塔到現(xiàn)代的飛機,從宏偉的建筑物到微小的分子結(jié)構(gòu),都有什么樣的形象?(2)在我們的生活中有沒有這樣的形象呢?試舉例.目前六頁\總數(shù)二十六頁\編于八點講授新課三角形的概念一問題1:觀察下面三角形的形成過程,說一說什么叫三角形?定義:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形.問題2:三角形中有幾條線段?有幾個角?A

B

C

有三條線段,三個角邊:線段AB,BC,CA是三角形的邊.頂點:點A,B,C是三角形的頂點,角:∠A,∠B,∠C叫做三角形的內(nèi)角,簡稱三角形的角.目前七頁\總數(shù)二十六頁\編于八點記法:三角形ABC用符號表示________.邊的表示:三角形ABC的邊AB、AC和BC可用小寫字母分別表示為________.△ABCc,a,bcba頂點C角角角頂點A頂點B目前八頁\總數(shù)二十六頁\編于八點BCA在△ABC中,AB邊所對的角是:∠A所對的邊是:∠CBC再說幾個對邊與對角的關(guān)系試試.三角形的對邊與對角:目前九頁\總數(shù)二十六頁\編于八點辨一辨:下列圖形符合三角形的定義嗎?不符合不符合不符合目前十頁\總數(shù)二十六頁\編于八點①位置關(guān)系:不在同一直線上;②聯(lián)接方式:首尾順次.三角形應滿足以下兩個條件:要點提醒表示方法:三角形用符號“△”表示;記作“△ABC”,讀作“三角形ABC”,除此△ABC還可記作△BCA,△CAB,△ACB等.目前十一頁\總數(shù)二十六頁\編于八點找一找:(1)圖中有幾個三角形?用符號表示出這些三角形?

ABCDE5個,它們分別是△ABE,△ABC,△BEC,△BCD,△ECD.(2)以AB為邊的三角形有哪些?△ABC、△ABE.(3)以E為頂點的三角形有哪些?△ABE

、△BCE、△CDE.(4)以∠D為角的三角形有哪些?△BCD、△DEC.(5)說出△BCD的三個角和三個頂點所對的邊.△BCD的三個角是∠BCD、∠BDC、∠CBD.頂點B所對應的邊為DC,頂點C所對應的邊為BD,頂點D所對應的邊為BC.目前十二頁\總數(shù)二十六頁\編于八點問題:如果以三角形邊的元素的不同,三角形該如何分類呢?觀察圖形回答下面各小題.

三角形的分類二目前十三頁\總數(shù)二十六頁\編于八點(1)等腰三角形和等邊三角形的區(qū)別是什么?(2)從邊上來說,除了等腰三角形和等邊三角形還有什么樣的三角形?(3)根據(jù)上面的內(nèi)容思考:怎樣對三角形進行分類?等腰三角形兩邊相等,等邊三角形三邊相等.三邊都不相等的三角形.目前十四頁\總數(shù)二十六頁\編于八點等邊三角形等腰三角形不等邊三角形(頂角(底角(底角按是否有邊相等分三角形不等邊三角形等腰三角形底和腰不相等的等腰三角形等邊三角形腰底邊目前十五頁\總數(shù)二十六頁\編于八點判斷:(1)等邊三角形是特殊的等腰三角形.()√(2)等腰三角形的腰和底一定不相等.()×(3)等邊三角形是等腰三角形.()√目前十六頁\總數(shù)二十六頁\編于八點三角形的三邊關(guān)系三我要到學校可以怎么走呀?哪一條路最近呀?郵局學校商店小影家小影目前十七頁\總數(shù)二十六頁\編于八點ABC路線1:從A到C再到B路線走;路線2:沿線段AB走.請問:路線1、路線2哪條路程較短,你能說出你的根據(jù)嗎?解:路線2較短.根據(jù)“兩點之間線段最短”.由此,你能得出什么結(jié)論?議一議目前十八頁\總數(shù)二十六頁\編于八點三角形的任意兩邊之和大于第三邊.ABC還能得出其他的三邊關(guān)系嗎?

只要滿足較小的兩條線段之和大于第三條線段,便可構(gòu)成三角形;若不滿足,則不能構(gòu)成三角形.總結(jié)歸納三角形的任意兩邊之差小于第三邊目前十九頁\總數(shù)二十六頁\編于八點例1:判斷下列長度的三條線段能否拼成三角形?為什么?(1)3cm、8cm、4cm;(2)5cm、6cm、11cm;(3)5cm、6cm、10cm.典例精析

判斷三條線段是否可以組成三角形,只需說明兩條較短線段之和大于第三條線段即可.解:(1)不能,因為3cm+4cm<8cm;(2)不能,因為5cm+6cm=11cm;(3)能,因為5cm+6cm>10cm.歸納目前二十頁\總數(shù)二十六頁\編于八點例3

如圖,D是△ABC的邊AC上一點,AD=BD,試判斷AC與BC的大小.解:在△BDC中,有BD+DC>BC(三角形的任意兩邊之和大于第三邊).又因為AD=BD,則BD+DC=AD+DC=AC,所以AC>BC.目前二十一頁\總數(shù)二十六頁\編于八點當堂練習1.下列長度的三條線段能否組成三角形?為什么?(1)3,4,8()(2)2,5,6()(3)5,6,10()(4)3,5,8()不能能能不能2.三角形的兩邊分別為2和6,第三邊長為偶數(shù),則第三邊的長為

,3.三角形的三邊分別為3,4,第三邊長為偶數(shù),則的取值范圍是

,目前二十二頁\總數(shù)二十六頁\編于八點4.如果等腰三角形的一邊長是4cm,另一邊長是9cm,則這個等腰三角形的周長為______________.3.如果等腰三角形的一邊長是5cm,另一邊長是8cm,則這個等腰三角形的周長為______________.2.五條線段的長分別為1cm,2cm,3cm,4cm,5cm,以其中三條線為邊長可以構(gòu)成________個三角形.322cm18cm或21cm目前二十三頁\總數(shù)二十六頁\編于八點拓展提升5.已知:a、b、c為三角形的三邊長,化簡:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|.∴原式=|(b+c)-a|+|b-(c+a)|-|c-(a+b)|-|(a+c)-b|

=b+c-a+a+c-b-a-b+c+b-a-c

=2c-2a.解:∵a、b、c為三角形三邊的長,∴a+b>c,a+c>b,b+c>a,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論