山東省日照市高新區(qū)中學2023年數(shù)學八年級第二學期期末監(jiān)測試題含解析_第1頁
山東省日照市高新區(qū)中學2023年數(shù)學八年級第二學期期末監(jiān)測試題含解析_第2頁
山東省日照市高新區(qū)中學2023年數(shù)學八年級第二學期期末監(jiān)測試題含解析_第3頁
山東省日照市高新區(qū)中學2023年數(shù)學八年級第二學期期末監(jiān)測試題含解析_第4頁
山東省日照市高新區(qū)中學2023年數(shù)學八年級第二學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)2.如圖,正方形ABCD的邊長為3,對角線AC、BD相交于點O,將AC向兩個方向延長,分別至點E和點F,且AE=CF=3,則四邊形BEDF的周長為()A.20 B.24 C.12 D.123.以下說法正確的是()A.在同一年出生的400人中至少有兩人的生日相同B.一個游戲的中獎率是1%,買100張獎券,一定會中獎C.一副撲克牌中,隨意抽取一張是紅桃K,這是必然事件D.一個袋中裝有3個紅球、5個白球,任意摸出一個球是紅球的概率是34.點,點是一次函數(shù)圖象上的兩個點,且,則與的大小關系是()A. B. C. D.5.已知:等邊三角形的邊長為6cm,則一邊上的高為()A. B.2 C.3 D.6.下列四個多項式中,不能因式分解的是()A.a2+a B. C. D.7.如果有意義,那么實數(shù)x的取值范圍是()A.x≥0 B.x≠2 C.x≥2 D.x≥-28.在學校舉行的“陽光少年,勵志青年”的演講比賽中,五位評委給選手小明的評分分別為:90,85,90,80,95,則這組數(shù)據(jù)的眾數(shù)是()A.95 B.90 C.85 D.809.若點A(3,y1),B(﹣2,y2)都在直線y=﹣x+n上,則y1與y2的大小關系是()A.y1<y2 B.y1>y2C.y1=y(tǒng)2 D.以上都有可能10.甲、乙、丙、丁四位選手各射擊10次,每人的平均成績都是9.3環(huán),方差如表:選手

方差(環(huán)2)

0.035

0.016

0.022

0.025

則這四個人種成績發(fā)揮最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁11.下列變形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)12.如圖,已知Rt△ABC中,∠ABC=90°,分別以AB、BC、AC為直徑作半圓,面積分別記S1,S2,S3,若S1=4,S2=9,則S3的值為()A.13 B.5 C.11 D.3二、填空題(每題4分,共24分)13.20190=__________.14.如圖,正方形ABCD的邊長為2,MN∥BC分別交AB、CD于點M、N,在MN上任取兩點P、Q,那么圖中陰影部分的面積是_____.15.如果一個直角三角形的兩邊分別是6,8,那么斜邊上的中線是___________.16.如圖,河壩橫斷面迎水坡的坡比是(坡比是斜坡兩點之間的高度差與水平距離之比),壩高,則坡面的長度是_______.17.如圖,矩形ABCD的對角線AC,BD相交于點O,CE∥BD,DE∥AC.若AC=4,則四邊形CODE的周長是__________.18.不等式9﹣3x>0的非負整數(shù)解的和是_____.三、解答題(共78分)19.(8分)(1)解分式方程:;(2)化簡:20.(8分)如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.(1)這個云梯的底端B離墻多遠?(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?21.(8分)(1)分解因式:x(x﹣y)﹣y(y﹣x)(2)解不等式組,并把它的解集在數(shù)軸上表示出來.22.(10分)小聰與小明在一張矩形臺球桌ABCD邊打臺球,該球桌長AB=4m,寬AD=2m,點O、E分別為AB、CD的中點,以AB、OE所在的直線建立平面直角坐標系。(1)如圖1,M為BC上一點;①小明要將一球從點M擊出射向邊AB,經反彈落入D袋,請你畫出AB上的反彈點F的位置;②若將一球從點M(2,12)擊出射向邊AB上點F(0.5,0),問該球反彈后能否撞到位于(-0.5,0.8)位置的另一球?請說明理由(2)如圖2,在球桌上放置兩個擋板(厚度不計)擋板MQ的端點M在AD中點上且MQ⊥AD,MQ=2m,擋板EH的端點H在邊BC上滑動,且擋板EH經過DC的中點E;①小聰把球從B點擊出,后經擋板EH反彈后落入D袋,當H是BC中點時,試證明:DN=BN;②如圖3,小明把球從B點擊出,依次經擋板EH和擋板MQ反彈一次后落入D袋,已知∠EHC=75°,請你直接寫出球的運動路徑BN+NP+PD的長。23.(10分)某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.(1)求A,B兩種型號的機器人每小時分別搬運多少材料;(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?24.(10分)解不等式組并將解集在數(shù)軸上表示出來.25.(12分)為了了解某校七年級男生的體能情況,體育老師隨即抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成圖1和圖2尚不完整的統(tǒng)計圖.(1)本次抽測的男生有人;(2)請你將圖1的統(tǒng)計圖補充完整;(3)若規(guī)定引體向上5次以上(含5次)為體能達標,則該校350名九年級男生中,估計有多少人體能達標?26.己知:如圖1,⊙O的半徑為2,BC是⊙O的弦,點A是⊙O上的一動點.圖1圖2(1)當△ABC的面積最大時,請用尺規(guī)作圖確定點A位置(尺規(guī)作圖只保留作圖痕跡,不需要寫作法);(2)如圖2,在滿足(1)條件下,連接AO并延長交⊙O于點D,連接BD并延長交AC的延長線于點E,若∠BAC=45°,求AC2+CE2的值.

參考答案一、選擇題(每題4分,共48分)1、A【解析】

∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.2、D【解析】

根據(jù)正方形的性質,可知其對角線互相平分且垂直;由正方形的邊長,可求得其對角線長;再由已知AE=CF=3,可得OE=OF,從而四邊形為菱形;由勾股定理求得該菱形的一條邊,再乘以4即可求得四邊形BEDF的周長.【詳解】∵四邊形ABCD為正方形∴AC⊥BD∵正方形ABCD的邊長為3,∴AC=BD==6∴OA=OB=OC=OD=3∵AE=CF=3∴OE=OF=6∴四邊形BEDF為菱形∴BE=則四邊形BEDF的周長為4×3.故選D.【點睛】本題考查了正方形的性質、對角線互相垂直平分的四邊形是菱形及勾股定理的應用,具有一定的綜合性.3、A【解析】A.一年有365天或366天,所以400人中一定有兩人同一天出現(xiàn),為必然事件.故正確B.買了100張獎券可能中獎且中獎的可能性很小,故錯誤C.一副撲克牌中,隨意抽取一張是紅桃K,這是不確定事件,故錯誤D.一個袋中裝有3個紅球、5個白球,任意摸出一個球是紅球的概率是38故選A4、A【解析】

根據(jù)一次函數(shù)的增減性即可判斷.【詳解】∴函數(shù),y隨x的增大而減小,當時,.故選A.【點睛】此題主要考查一次函數(shù)的圖像,解題的關鍵是熟知一次函數(shù)的圖像性質.5、C【解析】

根據(jù)等邊三角形的性質三線合一求出BD的長,再利用勾股定理可求高.【詳解】如圖,AD是等邊三角形ABC的高,根據(jù)等邊三角形三線合一可知BD=BC=3,∴它的高AD==,故選:C.【點睛】本題考查等邊三角形的性質及勾股定理,較為簡單,解題的關鍵是掌握勾股定理.直角三角形兩條直角邊的平方和等于斜邊的平方.6、C【解析】

逐項分解判斷,即可得到答案.【詳解】解:A選項a2+a=a(a+1);B選項=(m+n)(m-n);C選項.不能因式分解;D選項.=(a+3)2.故選C【點睛】本題解題的觀念是理解因式分解的概念和常見的因式分解方法,即:把一個多項式化為幾個最簡整式的乘積的形式,這種變形叫做把這個因式分解(也叫作分解因式).7、D【解析】

根據(jù)二次根式有意義的條件即可求出x的取值范圍.【詳解】由題意可知:x+2≥0,∴x≥-2故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件.8、B【解析】解:數(shù)據(jù)1出現(xiàn)了兩次,次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)是1.故選B.9、A【解析】

結合題意點A(3,y1),B(﹣1,y1)都在直線y=﹣x+n上,利用一次函數(shù)的增減性即可解決問題.【詳解】∵直線y=﹣x+n,﹣<0,∴y隨x的增大而減小,∵3>﹣1,∴y1<y1.故選:A.【點睛】本題考查一次函數(shù)圖象上的點的特征,解題的關鍵是學會利用一次函數(shù)的增減性解決問題,屬于中考??碱}型.10、B【解析】

方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大?。催@批數(shù)據(jù)偏離平均數(shù)的大?。┰跇颖救萘肯嗤那闆r下,方差越小,說明數(shù)據(jù)的波動越小,越穩(wěn)定.【詳解】解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最?。噙@四個人種成績發(fā)揮最穩(wěn)定的是乙.故選B.11、D【解析】

根據(jù)因式分解是把一個多項式轉化成幾個整式乘積的形式,可得答案.【詳解】A、是整式的乘法,故A錯誤;B、等式不成立,故B錯誤;C、沒把一個多項式轉化成幾個整式乘積的形式,故C錯誤;D、把一個多項式轉化成幾個整式乘積的形式,故D正確;故選:D.【點睛】此題考查因式分解的意義,解題關鍵在于掌握其定義12、A【解析】

由扇形的面積公式可知S1=?π?AC2,S2=?π?BC2,S3=?π?AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【詳解】解:∵S1=?π?AC2,S2=?π?BC2,S3=?π?AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=1.故選A.【點睛】本題考查勾股定理的應用,難度適中,解題關鍵是對勾股定理的熟練掌握及靈活運用,記住S1+S2=S3.二、填空題(每題4分,共24分)13、1【解析】

任何不為零的數(shù)的零次方都為1.【詳解】任何不為零的數(shù)的零次方都等于1.=1【點睛】本題考查零指數(shù)冪,熟練掌握計算法則是解題關鍵.14、1【解析】

陰影部分的面積等于正方形的面積減去和的面積和.而兩個三角形等底即為正方形的邊長,它們的高的和等于正方形的邊長,得出陰影部分的面積正方形面積的一半即可.【詳解】解:由圖知,陰影部分的面積等于正方形的面積減去和的面積.而點到的距離與點到的距離的和等于正方形的邊長,即和的面積的和等于正方形的面積的一半,故陰影部分的面積.故答案為:1.【點睛】本題考查正方形的性質,正方形的面積,三角形的面積公式靈活運用,注意圖形的特點.15、4或5【解析】【分析】分兩種情況分析:8可能是直角邊也可能是斜邊;根據(jù)直角三角形斜邊上的中線等于斜邊的一半.【詳解】當一個直角三角形的兩直角邊分別是6,8時,由勾股定理得,斜邊==10,則斜邊上的中線=×10=5,當8是斜邊時,斜邊上的中線是4,故答案為:4或5【點睛】本題考核知識點:直角三角形斜邊上的中線.解題關鍵點:分兩種情況分析出斜邊.16、【解析】

根據(jù)坡度的概念求出AC,根據(jù)勾股定理求出AB.【詳解】解:∵坡AB的坡比是1:,壩高BC=2m,∴AC=2,由勾股定理得,AB==1(m),故答案為:1.【點睛】此題主要考查學生對坡度坡角的掌握及三角函數(shù)的運用能力,熟練運用勾股定理是解答本題的關鍵.17、1【解析】試題分析:首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質,易得OC=OD=2,即可判定四邊形CODE是菱形,繼而求得答案.試題解析:∵CE∥BD,DE∥AC,∴四邊形CODE是平行四邊形,∵四邊形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四邊形CODE是菱形,∴四邊形CODE的周長為:4OC=4×2=1.考點:1.菱形的判定與性質;2.矩形的性質.18、1【解析】

先根據(jù)不等式的性質求出不等式的解集,再找出不等式的非負整數(shù)解相加即可.【詳解】所以不等式的非負整數(shù)解為0,1,2則所求的和為故答案為:1.【點睛】本題考查了求一元一次不等式的整數(shù)解,掌握不等式的解法是解題關鍵.三、解答題(共78分)19、(1);(2).【解析】

(1)分式方程去分母轉化為整式方程,求出整式方程的解可得x的值,經檢驗是分式方程的解;(2)原式括號中兩項通分并進行同分母減法計算,同時利用除法法則變形、約分即可求解.【詳解】(1)解:經檢驗:是原方程的解,所以原方程的解為.(2)原式.【點睛】本題考查了解分式方程以及分式方程的混合運算,熟練掌握運算法則是正確解題的關鍵.20、(1)這個云梯的底端B離墻20米;(2)梯子的底部在水平方向右滑動了4米.【解析】

(1)由題意得OA=15米,AB-OB=5米,根據(jù)勾股定理OA2+OB2=AB2,可求出梯子底端離墻有多遠;

(2)由題意得此時CO=7米,CD=AB=25米,由勾股定理可得出此時的OD,繼而能和(1)的OB進行比較.【詳解】解:(1)設梯子的長度為x米,則云梯底端B離墻為x-5米。15x=25∴這個云梯的底端B離墻20米。(2)∵CO=AO-AC=15-8=7∴OD∴OD=24∴BD=OD-OB=24-20=4∴梯子的底部在水平方向右滑動了4米?!军c睛】此題主要考查了勾股定理得應用,關鍵是正確理解題意,掌握直角三角形兩直角邊的平方和等于斜邊的平方.21、(1)(x﹣y)(x+y);(2)﹣2<x≤1【解析】分析:(1)根據(jù)提公因式法,可分解因式;(2)根據(jù)解不等式,可得每個不等式的解集,根據(jù)不等式組的解集是不等式的公共部分,可得答案.解:(1)原式=(x﹣y)(x+y);(2)解不等式①1,得x>﹣2,解不等式②,得x≤1,把不等式①②在數(shù)軸上表示如圖,不等式組的解集是﹣2<x≤1.【點評】本題考查了因式分解,確定公因式(x﹣y)是解題關鍵.22、(1)①答案見解析②答案見解析(2)①證明見解析②2【解析】

(1)①根據(jù)反射的性質畫出圖形,可確定出點F的位置;②過點H作HG⊥AB于點G,利用點H的坐標,可知HG的長,利用矩形的性質結合已知可求出點B,C的坐標,求出BM,BF的長,再利用銳角三角函數(shù)的定義,去證明tan∠MFB=tan∠HFG,即可證得∠MFB=∠HFG,即可作出判斷;(2)①連接BD,過點N作NT⊥EH于點N,交AB于點T,利用三角形中位線定理可證得EH∥BD,再證明MQ∥AB,從而可證得∠DNQ=∠BNQ,∠DQN=∠NQB,利用ASA證明△DNQ≌△BNQ,然后利用全等三角形的性質,可證得結論;②作點B關于EH對稱點B',過點B'作B'G⊥BC交BC的延長線于點G,連接B'H,B'N,連接AP,過點B'作B'L⊥x軸于點L,利用軸對稱的性質,可證得AP=DP,NB'=NB,∠BHN=∠NHB'根據(jù)反射的性質,易證AP,NQ,NC在一條直線上,從而可證得BN+NP+PD=AB',再利用鄰補角的定義,可求出∠B'HG=30°,作EK=KH,利用等腰三角形的性質,及三角形外角的性質,求出∠CKH的度數(shù),利用解直角三角形表示出KH,CK的長,由BC=2,建立關于x的方程,解方程求出x的值,從而可得到CH,B'H的長,利用解直角三角形求出GH,BH的長,可得到點B'的坐標,再求出AL,B'L的長,然后在Rt△AB'L中,利用勾股定理就可求出AB'的長.【詳解】(1)解:①如圖1,②答:反彈后能撞到位于(-0.5,0.8)位置的另一球理由:如圖,設點H(-0.5,0.8),過點H作HG⊥AB于點G,∴HG=0.8∵矩形ABCD,點O,E分別為AB,CD的中點,AD=2,AB=4,∴OB=OA=2,BC=AD=OE=2∴點B(2,0),點C(2,2),∵點M(2,1.2),點F(0.5,0),∴BF=2-0.5=1.5,BM=1.2,F(xiàn)G=0.5-(-0.5)=1在Rt△BMF中,tan∠MFB=BMBF=在Rt△FGH中,tan∠HFG=HGFG=∴∠MFB=∠HFG,∴反彈后能撞到位于(-0.5,0.8)位置的另一球.(2)解:①連接BD,過點N作NT⊥EH于點N,交AB于點T,∴∠TNE=∠TNH=90°,∵小聰把球從B點擊出,后經擋板EH反彈后落入D袋,∴∠BNH=∠DNE,∴∠DNQ=∠BNQ;∵點M是AD的中點,MQ⊥EO,∴MQ∥AB,∴點Q是BD的中點,∴NT經過點Q;∵點E,H分別是DC,BC的中點,∴EH是△BCD的中位線,∴EH∥BD∵NT⊥EH∴NT⊥BD;∴∠DQN=∠NQB=90°在△DNQ和△BNQ中,∠DQN=∠NQB∴△DNQ≌△BNQ(ASA)∴DN=BN②作點B關于EH對稱點B',過點B'作B'G⊥BC交BC的延長線于點G,連接B'H,B'N,連接AP,過點B'作B'L⊥x軸于點L,∴AP=DP,NB'=NB,∠BHN=∠NHB'由反射的性質,可知AP,NQ,NC在一條直線上,∴BN+NP+PD=NB'+NP+AP=AB';∵∠EHC=75°,∠EHC+∠BHN=180°,

∴∠BHN=180°-75°=105°,∴∠NHB'=∠EHC+∠B'HG=105°∴∠B'HG=30°;如圖,作EK=KH,在Rt△ECH中,∠EHC=75°,∴∠E=90°-75°=15°,∴∠E=∠KHE=15°∴∠CKH=∠E+∠KHE=15°+15°=30°,∵設CH=x,則KH=2x,CK=3∴2x+解之:x=4-23,∴CH=4-2∴BH=B'H=BC-CH=2-(4-23)=2在Rt△B'GH中,B'G=12GH=B'Hcos∠B'HG=(23-2)×BG=BH+GH=3-∴點B'的橫坐標為:3-1+2=3∴點B'(3∴AL=2+3+1=3+B'L=3在Rt△AB'L中,AB'=A∴球的運動路徑BN+NP+PD的長為23【點睛】本題考查反射的性質,解直角三角形,矩形的性質,全等三角形的判定和性質以及勾股定理等知識點:(1)①根據(jù)反射的性質作圖,②根據(jù)等角的三角函數(shù)值相等證明∠MFB=∠HFG來說明反彈后能撞到另一球;(2)①利用ASA證明△DNQ≌△BNQ,然后利用全等三角形的性質可得結論,②作出輔助線,根據(jù)反射的性質和軸對稱的性質證明BN+NP+PD=AB',然后構建方程,解直角三角形并結合勾股定理求出AB'的長;其中能夠根據(jù)反射的性質作出圖形,利用方程思想及數(shù)形結合思想結合直角三角形的特殊角進行求解是解題的關鍵.23、(1)A型機器人每小時搬運150千克材料,B型機器人每小時搬運120千克材料;(2)至少購進A型機器人14臺.【解析】

(1)設B型機器人每小時搬運x千克材料,則A型機器人每小時搬運(x+30)千克材料,根據(jù)A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同建立方程求出其解即可得;(2)設購進A型機器人a臺,根據(jù)每小時搬運材料不得少于2800kg列出不等式進行求解即可得.【詳解】(1)設B型機器人每小時搬運x千克材料,則A型機器人每小時搬運(x+30)千克材料,根據(jù)題意,得,解得x=120,經檢驗,x=120是所列方程的解,當x=120時,x+30=150,答:A型機器人每小時搬運150千克材料,B型機器人每小時搬運120千克

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論