版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.2.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°3.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.4.在一次體育測試中,10名女生完成仰臥起坐的個數(shù)如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數(shù)不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.65.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x36.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元7.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.8.已知反比例函數(shù)y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣29.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷10.我國古代數(shù)學家劉徽用“牟合方蓋”找到了球體體積的計算方法.“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.如圖所示的幾何體是可以形成“牟合方蓋”的一種模型,它的俯視圖是()A. B. C. D.11.某校數(shù)學興趣小組在一次數(shù)學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數(shù)為38分B.這10名同學體育成績的平均數(shù)為38分C.這10名同學體育成績的眾數(shù)為39分D.這10名同學體育成績的方差為212.設0<k<2,關于x的一次函數(shù)y=(k-2)x+2,當1≤x≤2時,y的最小值是()A.2k-2B.k-1C.kD.k+1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數(shù)y=中自變量x的取值范圍是___________.14.株洲市城區(qū)參加2018年初中畢業(yè)會考的人數(shù)約為10600人,則數(shù)10600用科學記數(shù)法表示為_____.15.如圖,長方形內(nèi)有兩個相鄰的正方形,面積分別為3和9,那么陰影部分的面積為_____.16.如圖,把一個面積為1的正方形分成兩個面積為的長方形,再把其中一個面積為的長方形分成兩個面積為的正方形,再把其中一個面積為的正方形分成兩個面積為的長方形,如此進行下去……,試用圖形揭示的規(guī)律計算:__________.17.如圖,有一直徑是的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,用該扇形鐵皮圍成一個圓錐,所得圓錐的底面圓的半徑為米.18.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.20.(6分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調(diào)查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調(diào)查的學生總數(shù)為_____人,被調(diào)查學生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?21.(6分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?22.(8分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.23.(8分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)椋ǚ郑?,且,將其按分?shù)段分為五組,繪制出以下不完整表格:組別
成績(分)
頻數(shù)(人數(shù))
頻率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
請根據(jù)表格提供的信息,解答以下問題:本次決賽共有名學生參加;直接寫出表中a=,b=;請補全下面相應的頻數(shù)分布直方圖;若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.24.(10分)甲、乙、丙3名學生各自隨機選擇到A、B2個書店購書.(1)求甲、乙2名學生在不同書店購書的概率;(2)求甲、乙、丙3名學生在同一書店購書的概率.25.(10分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.26.(12分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.27.(12分)如圖,在建筑物M的頂端A處測得大樓N頂端B點的仰角α=45°,同時測得大樓底端A點的俯角為β=30°.已知建筑物M的高CD=20米,求樓高AB為多少米?(≈1.732,結果精確到0.1米)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.2、C【解析】
根據(jù)平行線的性質(zhì),可得的度數(shù),再根據(jù)以及平行線的性質(zhì),即可得出的度數(shù).【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質(zhì)的運用,解題時注意:兩直線平行,同旁內(nèi)角互補,且內(nèi)錯角相等.3、B【解析】
根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關鍵,考查學生的推理能力.4、C【解析】
用仰臥起坐個數(shù)不少于10個的頻數(shù)除以女生總人數(shù)10計算即可得解.【詳解】仰臥起坐個數(shù)不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.【點睛】本題考查了頻數(shù)與頻率,頻率=.5、B【解析】分析:直接利用合并同類項法則以及同底數(shù)冪的乘除運算法則和積的乘方運算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點睛:此題主要考查了合并同類項以及同底數(shù)冪的乘除運算和積的乘方運算,正確掌握運算法則是解題關鍵.6、C【解析】
用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.7、D【解析】
過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.8、D【解析】
根據(jù)反比例函數(shù)的性質(zhì)可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數(shù)y=﹣,∴在每個象限內(nèi),y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數(shù)的性質(zhì)解答.9、B【解析】
試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.10、A【解析】
根據(jù)俯視圖即從物體的上面觀察得得到的視圖,進而得出答案.【詳解】該幾何體的俯視圖是:.故選A.【點睛】此題主要考查了幾何體的三視圖;掌握俯視圖是從幾何體上面看得到的平面圖形是解決本題的關鍵.11、C【解析】試題分析:10名學生的體育成績中39分出現(xiàn)的次數(shù)最多,眾數(shù)為39;第5和第6名同學的成績的平均值為中位數(shù),中位數(shù)為:=39;平均數(shù)==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數(shù);中位數(shù);眾數(shù).12、A【解析】
先根據(jù)0<k<1判斷出k-1的符號,進而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當x=1時,y最小=1(k-1)+1=1k-1.故選A.【點睛】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當k<0,b>0時函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥﹣且x≠1【解析】
試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.14、1.06×104【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:10600=1.06×104,故答案為:1.06×104【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.15、1-1【解析】
設兩個正方形的邊長是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入陰影部分的面積是(y﹣x)x求出即可.【詳解】設兩個正方形的邊長是x、y(x<y),則x2=1,y2=9,x,y=1,則陰影部分的面積是(y﹣x)x=(11.故答案為11.【點睛】本題考查了二次根式的應用,主要考查學生的計算能力.16、【解析】
結合圖形發(fā)現(xiàn)計算方法:,即計算其面積和的時候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點睛】此題注意結合圖形的面積找到計算的方法:其中的面積和等于總面積減去剩下的面積.17、【解析】
先利用△ABC為等腰直角三角形得到AB=1,再設圓錐的底面圓的半徑為r,則根據(jù)圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2πr=,然后解方程即可.【詳解】∵⊙O的直徑BC=,
∴AB=BC=1,
設圓錐的底面圓的半徑為r,
則2πr=,解得r=,
即圓錐的底面圓的半徑為米故答案為.18、-1【解析】
利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,
在每個象限內(nèi),y隨著x的增大而增大,
反比例函數(shù)圖象在第一、三象限,
,
的值可以取等,答案不唯一
故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【點睛】本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關鍵,在(3)中確定出點P的位置,構造相似三角形是解題的關鍵,注意分兩種情況.20、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】
(1)根據(jù)統(tǒng)計圖可知,課外閱讀達3小時的共10人,占總人數(shù)的20%,由此可得出總人數(shù);求出課外閱讀時間4小時與6小時男生的人數(shù),再根據(jù)中位數(shù)與眾數(shù)的定義即可得出結論;根據(jù)求出的人數(shù)補全條形統(tǒng)計圖即可;
(2)求出課外閱讀時間為5小時的人數(shù),再求出其人數(shù)與總人數(shù)的比值即可得出扇形的圓心角度數(shù);
(3)求出總人數(shù)與課外閱讀時間為6小時的學生人數(shù)的百分比的積即可.【詳解】解:(1)∵課外閱讀達3小時的共10人,占總人數(shù)的20%,∴=50(人).∵課外閱讀4小時的人數(shù)是32%,∴50×32%=16(人),∴男生人數(shù)=16﹣8=8(人);∴課外閱讀6小時的人數(shù)=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數(shù)是4小時,眾數(shù)是5小時.補全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時的人數(shù)是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時的人數(shù)是4人,∴800×=64(人).答:九年級一周課外閱讀時間為6小時的學生大約有64人.【點睛】本題考查了統(tǒng)計圖與中位數(shù)、眾數(shù)的知識點,解題的關鍵是熟練的掌握中位數(shù)與眾數(shù)的定義與根據(jù)題意作圖.21、男生有12人,女生有21人.【解析】
設該興趣小組男生有x人,女生有y人,然后再根據(jù):(男生的人數(shù)-1)×2-1=女生的人數(shù),(女生的人數(shù)-1)×=男生的人數(shù)
,列出方程組,再進行求解即可.【詳解】設該興趣小組男生有x人,女生有y人,依題意得:,解得:.答:該興趣小組男生有12人,女生有21人.【點睛】本題主要考查了二元一次方程組的應用,解題的關鍵是明確題中各個量之間的關系,并找出等量關系列出方程組.22、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】
(1)直接利用直角三角形的性質(zhì)結合勾股定理得出符合題意的圖形;(2)根據(jù)矩形的性質(zhì)畫出符合題意的圖形;
(3)根據(jù)題意利用勾股定理得出結論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據(jù)勾股定理得EM=.【點睛】本題考查了勾股定理與作圖,解題的關鍵是熟練的掌握直角三角形的性質(zhì)與勾股定理.23、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據(jù)第一組別的人數(shù)和百分比得出樣本容量;(2)根據(jù)樣本容量以及頻數(shù)、頻率之間的關系得出a和b的值,(3)根據(jù)a的值將圖形補全;(4)根據(jù)圖示可得:優(yōu)秀的人為第四和第五組的人,將兩組的頻數(shù)相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數(shù)分布直方圖24、(1)P=;(2)P=.【解析】試題分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結果,然后根據(jù)概率公式求出該事件的概率.試題解析:(1)甲、乙兩名學生到A、B兩個書店購書的所有可能結果有:
從樹狀圖可以看出,這兩名學生到不同書店購書的可能結果有AB、BA共2種,
所以甲乙兩名學生在不同書店購書的概率P(甲、乙2名學生在不同書店購書)=;(2)甲、乙、丙三名學生AB兩個書店購書的所有可能結果有:
從樹狀圖可以看出,這三名學生到同一書店購書的可能結果有AAA、BBB共2種,
所以甲乙丙到同一書店購書的概率P(甲、乙、丙3名學生在同一書店購書)=.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)見解析;(2)見解析;(3)AB=1【解析】
(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國汽車后市場行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國汽車改裝行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 2025-2030年中國SIP封裝行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國模擬集成電路設計行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 建設美麗校園工作實施方案
- 2024年公務員考試臺州市天臺縣《行政職業(yè)能力測驗》模擬試題含解析
- 智能化飼料機械生產(chǎn)項目可行性研究報告申請立項
- 2025年摩托車減震器鋁筒項目可行性研究報告
- 酒店消防知識培訓課件
- 手拉手活動參考計劃
- 【可行性報告】2024年第三方檢測相關項目可行性研究報告
- 藏醫(yī)學專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓
- 2024新版《藥品管理法》培訓課件
- DB41T 2302-2022 人工影響天氣地面作業(yè)規(guī)程
- 【初中語文】2024-2025學年新統(tǒng)編版語文七年級上冊期中專題12:議論文閱讀
- 四川省成都市2022-2023學年高二上學期期末調(diào)研考試物理試題(原卷版)
- 四川新農(nóng)村建設農(nóng)房設計方案圖集川西部分
- OBE教育理念驅(qū)動下的文學類課程教學創(chuàng)新路徑探究
- 2024政務服務綜合窗口人員能力與服務規(guī)范考試試題
- 《陸上風電場工程設計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
評論
0/150
提交評論