數(shù)學(xué)集合的知識點精編17篇_第1頁
數(shù)學(xué)集合的知識點精編17篇_第2頁
數(shù)學(xué)集合的知識點精編17篇_第3頁
數(shù)學(xué)集合的知識點精編17篇_第4頁
數(shù)學(xué)集合的知識點精編17篇_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學(xué)集合的知識點(精編17篇)數(shù)學(xué)集合的學(xué)問點(1)

一、平面解析幾何的基本思想和主要問題

平面解析幾何是用代數(shù)的方法討論幾何問題的一門數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法討論幾何問題。例如,用直線的方程可以討論直線的性質(zhì),用兩條直線的方程可以討論這兩條直線的位置關(guān)系等。

平面解析幾何討論的問題主要有兩類:一是依據(jù)已知條件,求出表示平面曲線的方程;二是通過方程,討論平面曲線的性質(zhì)。

二、直線坐標(biāo)系和直角坐標(biāo)系

直線坐標(biāo)系,也就是數(shù)軸,它有三個要素:原點、度量單位和方向。假如讓一個實數(shù)與數(shù)軸上坐標(biāo)為的點對應(yīng),那么就可以在實數(shù)集與數(shù)軸上的點集之間建立一一對應(yīng)關(guān)系。

點與實數(shù)對應(yīng),則稱點的坐標(biāo)為,記作,如點坐標(biāo)為,則記作;點坐標(biāo)為,則記為。

直角坐標(biāo)系是由兩條相互垂直且有公共原點的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時也可以不同,兩個數(shù)軸的交點是直角坐標(biāo)系的原點。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對構(gòu)成的集合與坐標(biāo)平面內(nèi)的點集具有一一對應(yīng)關(guān)系。

一個點的坐標(biāo)是這樣求得的,由點向軸及軸作垂線,在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對應(yīng)的值為點的橫坐標(biāo),在軸上的正投影所對應(yīng)的值為點的縱坐標(biāo)。

在學(xué)習(xí)這兩種坐標(biāo)系時,要留意用類比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個坐標(biāo)軸,每個點的坐標(biāo)需用兩個實數(shù)(即一對有序?qū)崝?shù))來表示,而直線坐標(biāo)系是一維坐標(biāo)系,它只有一個坐標(biāo)軸,每個點的坐標(biāo)只需用一個實數(shù)來表示。

三、向量的有關(guān)概念和公式

假如數(shù)軸上的任意一點沿著軸的正向或負向移動到另一個點,則說點在軸上作了一次位移。位移是一個既有大小又有方向的量,通常叫做位移向量,簡稱向量,記作。假如點移動的方向與數(shù)軸的正方向相同,則向量為正,否則為負。線段的長叫做向量的長度,記作。向量的長度連同表示其方向的正負號叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,,三個符號的含義。

對于數(shù)軸上任意三點,都有成立。該等式左邊表示在數(shù)軸上點向點作一次位移,等式右邊表示點先向點作一次位移,再由點向點作一次位移,它們的最終結(jié)果是相同的。

向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點的坐標(biāo)減去起點的坐標(biāo),這個公式特別重要。

有相等坐標(biāo)的兩個向量相等,看做同一個向量;反之,兩個相等向量坐標(biāo)必相等。

留意:①相等的全部向量看做一個整體,作為同一向量,都等于以原點為起點,坐標(biāo)與這全部向量相等的那個向量。②向量與數(shù)軸上的實數(shù)(或點)是一一對應(yīng)的,零向量即原點。

四、兩點的距離公式和中點公式

1。對于數(shù)軸上的兩點,設(shè)它們的坐標(biāo)分別為,,則的距離為,的中點的坐標(biāo)為。

由于表示數(shù)軸上兩點與的距離,所以在解一些簡潔的含肯定值的方程或不等式時,常借助于數(shù)形結(jié)合思想,將問題轉(zhuǎn)化為數(shù)軸上的距離問題加以解決。例如,解方程時,可以將問題看作在數(shù)軸上求一點,使它到,的距離之和等于。

2。對于直角坐標(biāo)系中的兩點,設(shè)它們的坐標(biāo)分別為,,則兩點的距離為,的中點的坐標(biāo)滿意。

兩點的距離公式和中點公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能嫻熟把握并能敏捷運用。

五、坐標(biāo)法

坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來討論幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點,把曲線看成滿意某種條件的點的集合或軌跡,用曲線上點的坐標(biāo)所滿意的方程表示曲線,通過討論方程,間接地來討論曲線的性質(zhì)。

數(shù)學(xué)集合的學(xué)問點(2)

本節(jié)內(nèi)容主要是空間點、直線、平面之間的位置關(guān)系,在熟悉過程中,可以進一步提高同學(xué)們的空間想象力量,進展推理力量.通過對實際模型的熟悉,學(xué)會將文字語言轉(zhuǎn)化為圖形語言和符號語言,以詳細的長方體中的點、線、面之間的關(guān)系作為載體,使同學(xué)們在直觀感知的基礎(chǔ)上,熟悉空間中點、線、面之間的位置關(guān)系,點、線、面的位置關(guān)系是立體幾何的主要討論對象,同時也是空間圖形最基本的幾何元素.

重難點學(xué)問歸納

1、平面

(1)平面概念的理解

直觀的理解:桌面、黑板面、安靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

抽象的理解:平面是平的,平面是無限延展的,平面沒有厚?。?/p>

(2)平面的表示法

①圖形表示法:通常用平行四邊形來表示平面,有時依據(jù)實際需要,也用其他的平面圖形來表示平面.

②字母表示:常用等希臘字母表示平面.

(3)涉及本部分內(nèi)容的符號表示有:

①點A在直線l內(nèi),記作;

②點A不在直線l內(nèi),記作;

③點A在平面內(nèi),記作;

④點A不在平面內(nèi),記作;

⑤直線l在平面內(nèi),記作;

⑥直線l不在平面內(nèi),記作;

留意:符號的使用與集合中這四個符號的使用的區(qū)分與聯(lián)系.

(4)平面的基本性質(zhì)

公理1:假如一條直線的兩個點在一個平面內(nèi),那么這條直線上的全部點都在這個平面內(nèi).

符號表示為:.

留意:假如直線上全部的點都在一個平面內(nèi),我們也說這條直線在這個平面內(nèi),或者稱平面經(jīng)過這條直線.

公理2:過不在一條直線上的三點,有且只有一個平面.

符號表示為:直線AB存在唯一的平面,使得.

留意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面.

公理3:假如兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.

符號表示為:.

留意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交于直線l,記作.

公理的推論:

推論1:經(jīng)過一條直線和直線外的一點有且只有一個平面.

推論2:經(jīng)過兩條相交直線有且只有一個平面.

推論3:經(jīng)過兩條平行直線有且只有一個平面.

2.空間直線

(1)空間兩條直線的位置關(guān)系

①相交直線:有且僅有一個公共點,可表示為;

②平行直線:在同一個平面內(nèi),沒有公共點,可表示為a//b;

③異面直線:不同在任何一個平面內(nèi),沒有公共點.

(2)平行直線

公理4:平行于同一條直線的兩條直線相互平行.

符號表示為:設(shè)a、b、c是三條直線,.

定理:假如一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等.

(3)兩條異面直線所成的角

留意:

①兩條異面直線a,b所成的角的范圍是(0°,90°].

②兩條異面直線所成的角與點O的選擇位置無關(guān),這可由前面所講過的“等角定理”直接得出.

③由兩條異面直線所成的角的定義可得出異面直線所成角的一般方法:

(i)在空間任取一點,這個點通常是線段的中點或端點.

(ii)分別作兩條異面直線的平行線,這個過程通常采納平移的方法來實現(xiàn).

(iii)指出哪一個角為兩條異面直線所成的角,這時我們要留意兩條異面直線所成的角的范圍.

3.空間直線與平面

直線與平面位置關(guān)系有且只有三種:

(1)直線在平面內(nèi):有很多個公共點;

(2)直線與平面相交:有且只有一個公共點;

(3)直線與平面平行:沒有公共點.

4.平面與平面

兩個平面之間的位置關(guān)系有且只有以下兩種:

(1)兩個平面平行:沒有公共點;

(2)兩個平面相交:有一條公共直線。

數(shù)學(xué)集合的學(xué)問點(3)

1、高一數(shù)學(xué)學(xué)問點總結(jié):集合一、集合有關(guān)概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

留意:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括號內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數(shù)學(xué)學(xué)問點總結(jié):集合間的基本關(guān)系

1.“包含”關(guān)系—子集

留意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A

2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

實例:設(shè)A={x|x2

-1=0}B={-1,1}“元素相同則兩集合相等”即:

①任何一個集合是它本身的子集。A?A

②真子集:假如A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③假如A?B,B?C,那么A?C

④假如A?B同時B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論