初二奧數(shù)之分式的運(yùn)算_第1頁
初二奧數(shù)之分式的運(yùn)算_第2頁
初二奧數(shù)之分式的運(yùn)算_第3頁
初二奧數(shù)之分式的運(yùn)算_第4頁
初二奧數(shù)之分式的運(yùn)算_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)競賽

專題06從地平面到腳手架分式的運(yùn)算閱讀與思考分式的主要內(nèi)容包括分式的概念、分式的基本性質(zhì)、分式的四則運(yùn)算、簡單的分式方程等.分式的運(yùn)算與分?jǐn)?shù)的運(yùn)算類似,是以整式的變形、因式分解及計算為工具,以分式的基本性質(zhì)、運(yùn)算法則和約分為基礎(chǔ).分式的加減運(yùn)算是分式運(yùn)算的難點(diǎn),解決這一難點(diǎn)的關(guān)鍵是根據(jù)題目的特點(diǎn)恰當(dāng)?shù)赝ǚ郑ǚ滞ǔS幸韵虏呗耘c技巧:.分步通分,步步為營;.分組通分,化整為零;.減輕負(fù)擔(dān),先約分再通分;.拆項相消后通分;.恰當(dāng)換元后通分,學(xué)習(xí)分式時.應(yīng)注意:⑴分式與分?jǐn)?shù)的類比.整數(shù)可以看做是分?jǐn)?shù)的特殊情形,但整式卻不能看做是分式的特殊情形;(2)整式與分式的區(qū)別需要討論字母的取值范圍,這是分式區(qū)別于整式的關(guān)鍵所在.分式問題比起整式問題,增加了幾個難點(diǎn);⑴從"平房"到"樓房",在"腳手架"上活動;⑵分式的運(yùn)算中多了通分和約分這兩道技術(shù)性很強(qiáng)的工序;⑶需要考慮字母的取值范圍,例題與求解【例1】m例題與求解【例1】m= 時,八#(m-1)(m-3)刀工m2-3m+2的值為0.(杭州市中考試題)解題思路:分母不為0時,分式有意義,分子與分母的公因式m-1就不為0.【例2】已知abc=1,以a+b+c=2,a2+b2+c2=3,則—-1~~-+-~~1~~-+——1--的ab+c-1bc+a-1ca+b-1值為( ).1D.A.1 B.-- C.D.2

(太原市競賽試題)解題思路:不宜直接通分,運(yùn)用已知條件a+b+。=2,對分母分解因式,分解后再通分【例3】計算:112a 4a3 + + + a一ba+ba2+b2a4+b4(武漢市競賽試題)a b 1 1 a2+3b2 + + 一 一 a3+a2b+ab2+b3a3-a2b+ab2-b3a2-b2a2+b2a4-b4(天津市競賽試題)(3)x3+1 2(x2+1)(3)x3—2x2+2x—1 x2—1(贛州市競賽試題)(4)b2 (4)b2 a2 -—+ +2a2 b2ba

一十一

abb3a3 ba————3(———

a3b3 abb2a2—+——2a2b2(漳州市競賽試題)解題思路:由于各個分式復(fù)雜,因此,必須仔細(xì)觀察各式中分母的特點(diǎn),恰當(dāng)運(yùn)用通分的相關(guān)策略與… ,,、一,一一,_、,b,、a 「b a , .一一技巧;對于(4),注意到題中各式是關(guān)于一或7的代數(shù)式,考慮設(shè)一=x,-=y,則xy=1,通過換元可ab a b降低問題的難度.當(dāng)一個數(shù)學(xué)問題不能或不便于從整體上加以解決時,我們可以從局部入手將原題分解。這便是解題的分解策略.解絕對值問題時用的分類、分段討論;解分式問題時用的分步分組通分、因式分解的分組分解法以及裂項求值等都是分解策略的具體運(yùn)用.

【例4】求最大的正整數(shù)n,使得n3+100能被n+10整除.(美國數(shù)學(xué)邀請賽試題)解題思路:運(yùn)用長除法或把兩個整式整除的問題轉(zhuǎn)化為一個分式的問題加以解決類似于分?jǐn)?shù),當(dāng)一個分式的分子的次數(shù)高于或等于分母的次數(shù),那么就可以將分式化為整數(shù)部分與分式部分的和,分式的這種變形稱為拆分變形,是拆項變形的一種.【例5】已知ab1a【例5】已知ab1a+b15ca1c+a16abc求丁 的值?ab+bc+ca(太原市競賽試題)111解題思路:設(shè)法求出一+7+-的值?abc【例6】(1)設(shè)a,b,c均為非零實數(shù),并且ab=2(a+b),bc=3(b+c),ca=4(c+a),則a+b+c等于多少? (北京市競賽試題)(2)計算:12 22 k2 992 + +L+ +L+

12—100+500022—200+5000 k2—100k+5000 992—9900+5000

(上海市競賽試題)解題思路:對于(1),通過變換題中等式,即可列出方程組,解得。,b,c的值;對于(2),仔細(xì)觀察,即可發(fā)現(xiàn)其中規(guī)律..要使分式有意義,則x的取值范圍是,一, x2+11.代數(shù)式y(tǒng)=--的值為整數(shù)的全體自然數(shù)x的和是(全國初中數(shù)學(xué)聯(lián)賽試題), 2 2 2x+18.已知x為整數(shù),且一-+--+-為整數(shù),則所有符合條件的x值的和為4.4.x一3xy一2y("祖沖之杯"邀請賽試題).關(guān)于分式,下列四種說法中正確的是( ).A.含有分母的代數(shù)式叫做分式.分式的分母、分子同乘以(或除以)2a+3,分式的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論