版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
參考答案:1.B【分析】由,配方可得,進而可得的值,然后代入,計算求解即可.【詳解】解:∵,∴,∴,∴,,∴,故選:B.【點睛】本題考查了配方法解一元二次方程,代數(shù)式求值.解題的關(guān)鍵在于正確的配方求出的值.2.A【分析】利用一元二次方程根的判別式求解即可.【詳解】解:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,∴,∴,故選A.【點睛】本題主要考查了一元二次方程根的判別式,對于一元二次方程,若,則方程有兩個不相等的實數(shù)根,若,則方程有兩個相等的實數(shù)根,若,則方程沒有實數(shù)根.3.C【分析】利用根的判別式和一元二次方程的定義計算判斷即可.【詳解】∵方程有兩個不相等的實數(shù)根,∴.,解得且,故選C.【點睛】本題考查了根的判別式和一元二次方程的定義,熟練掌握根的判別式是解題的關(guān)鍵.4.B【分析】根據(jù)一元二次方程根的判別式與根的關(guān)系求解即可.【詳解】∵一元二次方程有兩個相等的實數(shù)根,∴,∴,故選:B.【點睛】本題考查一元二次方程根的判別式,解答關(guān)鍵是熟練掌握一元二次方程根的情況與根的判別式的關(guān)系:當(dāng)時,方程有兩個不相等的實數(shù)根;當(dāng)時,方程有兩個相等的實數(shù)根;當(dāng)時,方程沒有實數(shù)根..5.A【分析】根據(jù)有兩個不相等的實數(shù)根即可得到,即可得到答案.【詳解】解:∵x的一元二次方程有兩個不相等的實數(shù)根,∴,∴,滿足題意,故選:A【點睛】此題考查了一元二次方程,熟練掌握一元二次方程的根的判別式是解題的關(guān)鍵.6.D【分析】根據(jù)根的判別式得到,然后解關(guān)于m的不等式,即可求出m的取值范圍,并根據(jù)選項判斷.【詳解】∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,∴,∴,∴m+1>4,m>3,或m+1<-4,m<-5.故選D.【點睛】本題考查了一元二次方程根的判別式,一元二次方程有兩個不相等的實數(shù)根時,Δ>0.7.B【分析】根據(jù)“關(guān)于x的方程有實數(shù)根”可得此方程的根的判別式,據(jù)此求解可得.【詳解】由題意得:此方程的根的判別式解得故選:B.【點睛】本題考查了一元二次方程的根的判別式,熟記一元二次方程的根的判別式是解題關(guān)鍵.8.A【分析】根據(jù)一元二次方程的根的判別式即可得.【詳解】由題意得:此方程的根的判別式解得觀察四個選項可知,只有A選項符合題意故選:A.【點睛】本題考查了一元二次方程的根的判別式,熟記根的判別式是解題關(guān)鍵.9.【分析】關(guān)于x的二次三項式在實數(shù)范圍內(nèi)不能分解因式,就是對應(yīng)的二次方程無實數(shù)根,根據(jù)判別式,計算求解即可.【詳解】解:由題意知,,解得.故答案為:.【點睛】本題考查了一元二次方程的判別式.解題的關(guān)鍵在于理解題意.10.14【分析】先根據(jù)一元二次方程的定義和根的判別式求出a與c的關(guān)系,再寫出一組符合題意的值即可.【詳解】解:∵關(guān)于的一元二次方程有兩個相等的實數(shù)根,∴,∴,∴符合題意的一組值可以為,故答案為:1,4(答案不唯一,滿足且即可).【點睛】本題主要考查了一元二次方程根的判別式,對于一元二次方程,若,則方程有兩個不相等的實數(shù)根,若,則方程有兩個相等的實數(shù)根,若,則方程沒有實數(shù)根.11.【分析】根據(jù)一元二次方程的判別式,即可得出關(guān)于的一元一次不等式,解之即可得出的取值范圍.【詳解】根據(jù)題意得,,解得:,故答案為:.【點睛】本題考查了一元二次方程的根的判別式.解決本題的關(guān)鍵是根據(jù)解得情況列出不等式.12.【分析】兩邊同時平方,然后解方程即可.【詳解】解:兩邊平方得:,解方程得:,,檢驗:當(dāng)時,方程的左邊右邊,為原方程的根當(dāng)時,原方程無意義,故舍去.故答案為:.【點睛】本題主要考查二次根式有意義的條件及一元二次方程的解法,熟練掌握各個運算是解題的關(guān)鍵.13.【分析】根據(jù)根的判別式,即可得出,求解可得出的取值范圍.【詳解】解:∵關(guān)于的方程有有兩個不相等的實數(shù)根,∴,解得:.故答案為:.【點睛】本題考查了一元二次函數(shù)根的判別的應(yīng)用,根據(jù)根的情況列出判別式,求解不等式即可.14.9【分析】直接利用根的判別式進行判斷即可.【詳解】解:由題可知:“△=0”,即;∴;故答案為:9.【點睛】本題考查了用根的判別式判斷一元二次方程根的情況,解決本題的關(guān)鍵是牢記:△>0時,該方程有兩個不相等的實數(shù)根;△=0時,該方程有兩個相等的實數(shù)根;△<0時,該方程無實數(shù)根.15.【分析】由于關(guān)于x的一元二次方程x2+2(k-1)x+k2-1=0有兩個不相等的實數(shù)根,可知△>0,據(jù)此進行計算即可.【詳解】∵關(guān)于x的一元二次方程x2+2(k?1)x+k2?1=0有兩個不相等的實數(shù)根,∴△>0,∴[2(k?1)]2?4(k2?1)>0,∴k2?2k+1?k2+1>0,整理得,?2k+2>0,解得k<1.故實數(shù)k的取值范圍為k<1.【點睛】本題考查根的判別式,解題的關(guān)鍵是掌握根的判別式的計算及使用方法.16.,3【分析】根據(jù)方程根的定義,化簡代入計算即可.【詳解】解:,∵a是方程的一個根,∴,即.
∴原式.【點睛】本題考查了一元二次方程的根即使得方程左右兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.17.(1)見解析(2)【分析】(1)根據(jù)一元二次方程根的判別式及完全平方式的非負(fù)性,即可證得結(jié)論;(2)首先解一元二次方程,再根據(jù)根的情況,利用不等式,即可求解.【詳解】(1)證明:無論m取何值,,∴方程總有兩個實數(shù)根.(2)解:由原方程得:,解得,,∵方程有一個根為正數(shù),,,.【點睛】本題考查了一元二次方程根的判別式及根據(jù)根的情況求參數(shù),完全平方式的非負(fù)性,熟練掌握和運用一元二次方程根的判別式及解方程的方法是解決本題的關(guān)鍵.18.(1)見解析(2)【分析】(1)先求出一元二次方程根的判別式為,即可證明結(jié)論;(2)根據(jù)題意得到是原方程的根,根據(jù)方程兩個根均為正整數(shù),可求m的最小值.【詳解】(1)證明:由得,,∵,∴方程總有兩個實數(shù)根;(2)∵,∴,∴,∵方程的兩個實數(shù)根都是正整數(shù),∴.∴.∴m的最小值為.【點睛】本題考查的是根的判別式及解一元二次方程,在解答(2)時得到方程的兩個根是解題的關(guān)鍵.19.(1)證明見詳解;(2)2或.【分析】(1)先求一元二次方程的根的判別式,然后再證明即可;(2)不妨設(shè)方程的兩實數(shù)根為且,則,再利用一元二次方程的根與系數(shù)的關(guān)系可得,進而變形即可求解.【詳解】(1)解:關(guān)于的一元二次方程的根的判別式,不論取任何實數(shù),都有即成立;當(dāng)時,方程有兩個不相等的實數(shù)根,當(dāng)時,方程有兩個相等的實數(shù)根;故該方程總有兩個實數(shù)根;(2)解:不妨設(shè)方程的兩實數(shù)根為且,則,,又,,或,故的值為2或.【點睛】此題考查了一元二次方程的根的判別式、根與系數(shù)的關(guān)系、完全平方公式以及直接開平方求解一元二次方程等知識,熟練掌握根的判別式與根與系數(shù)的關(guān)系的應(yīng)用是解答此題的關(guān)鍵.20.(1)見解析(2)【分析】(1)計算方程根的判別式,判斷其符號即可;(2)求方程兩根,結(jié)合條件則可求得m的取值范圍.【詳解】(1)解:∴方程總有兩個實數(shù)根;(2)解:原方程可化為:或解得:,由題意可得:解得:【點睛】本題主要考查一元二次方程根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.21.(1)(2)k=2,方程的兩個根為,【分析】(1)根據(jù)題意和一元二次方程根的判別式得到,解不等式即可求得;(2)首先根據(jù)(1)可知,k的值只能是1或2,分別代入方程,解方程,再根據(jù)方程的兩個根均為整數(shù),即可解答.【詳解】(1)解:關(guān)于x的一元二次方程有兩個不相等的實數(shù)根解得故k的取值范圍為(2)解:且k為正整數(shù)k的值只能是1或2當(dāng)k=1時,方程為解得方程的兩個根均為整數(shù)k=1不合題意,舍去當(dāng)k=2時,方程為解得,
方程的兩個根均為整數(shù),符合題意故k=2,方程的兩個根為,【點睛】本題考查了一元二次方程根的判別式及解一元二次方程的方法,熟練掌握和運用一元二次方程根的判別式及解一元二次方程的方法是解決本題的關(guān)鍵.22.(1)見解析;(2)【分析】(1)直接利用根的判別式,判斷△≥0即可;(2)利用求根公式求得兩個,根據(jù)有一個根小于1列出不等式求解即可.【詳解】(1)證明:,∵無論m取何值時,,∴此方程總有兩個實數(shù)根.(2)解:,..∵此方程有一個根小于1,且...【點睛】本題考查根的判別式和用公式法解一元二次方程.解題的關(guān)鍵是:(1)牢記“當(dāng)△≥0時,方程有兩個實數(shù)根”;(2)利用公式法求出一元二次方程的根.23.不存在,理由見解析【分析】根據(jù)方程有實數(shù)根結(jié)合根的判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024正規(guī)航空航天產(chǎn)業(yè)投資借款協(xié)議3篇
- 天然氣灶具知識培訓(xùn)課件
- 2024房屋典當(dāng)借款合同
- 銀行前臺工作經(jīng)驗分享
- 班主任期中工作自我評價與反思
- 汽車設(shè)計師塑造時尚動感的汽車外形
- 2024年項目掛鉤保密協(xié)議
- 安全知識培訓(xùn)課件
- 攝影工作總結(jié)店員工作總結(jié)
- 云南國土資源職業(yè)學(xué)院《工程材料及成型技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 服務(wù)重點客戶
- 工業(yè)濾芯行業(yè)利潤分析
- 2023年四川成都市初中學(xué)業(yè)水平考試生物試卷真題(答案詳解)
- 橋梁工程施工現(xiàn)場監(jiān)測方案
- 帝國主義:資本主義發(fā)展的最高最后階段
- 江蘇省蘇州市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標(biāo)調(diào)研生物試題
- 閱讀理解:如何找文章線索 課件
- 2024年廣西北部灣港集團招聘筆試參考題庫含答案解析
- 科技館改造室內(nèi)裝修工程 投標(biāo)方案(技術(shù)方案)
- (外研版)高一英語必修1(全冊)同步練習(xí)匯總
- 朱熹文公世系通譜
評論
0/150
提交評論