版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
九年級(jí)上學(xué)期數(shù)學(xué)期中考試試卷一、選擇題〔此題有10個(gè)小題,每題4分,共40分〕1.對(duì)于二次函數(shù)的圖象,以下說法正確的選項(xiàng)是〔
〕A.
開口向下
B.
對(duì)稱軸是x=﹣1
C.
頂點(diǎn)坐標(biāo)是〔1,2〕
D.
與x軸有兩個(gè)交點(diǎn)2.如下列圖的圓規(guī),點(diǎn)A是鐵尖的端點(diǎn),點(diǎn)B是鉛筆芯尖的端點(diǎn),點(diǎn)A與點(diǎn)B的距離是2cm.假設(shè)鐵尖的端點(diǎn)A固定,鉛筆芯尖的端點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)一周,那么作出圓的直徑是〔
〕A.
1cm
B.
2cm
C.
4cm
D.
cm3.在一個(gè)不透明的袋子里裝有紅球、黃球共個(gè),這些球除顏色外都相同.小明通過屢次實(shí)驗(yàn)發(fā)現(xiàn),摸出紅球的頻率穩(wěn)定在左右,那么袋子中紅球的個(gè)數(shù)最有可能是〔
〕A.
5
B.
10
C.
12
D.
154.對(duì)于函數(shù),使得隨的增大而增大的的取值范圍是〔
〕A.
B.
C.
D.
5.將拋物線通過平移得到,那么以下平移過程正確的選項(xiàng)是〔
〕A.
先向左平移2個(gè)單位,再向上平移3個(gè)單位
B.
先向左平移2個(gè)單位,再向下平移3個(gè)單位
C.
先向右平移2個(gè)單位,再向下平移3個(gè)單位
D.
先向右平移2個(gè)單位,再向上平移3個(gè)單位6.對(duì)于二次函數(shù)y=ax2+bx+c--(a≠0),我們把使函數(shù)值等于0的實(shí)數(shù)x叫做這個(gè)函數(shù)的零點(diǎn),那么二次函數(shù)y=x2-mx-5(m為實(shí)數(shù))的零點(diǎn)的個(gè)數(shù)是〔
〕A.
1
B.
2
C.
0
D.
不能確定7.如圖,在5×5正方形網(wǎng)格中,一條圓弧經(jīng)過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是〔-2,3〕,點(diǎn)C的坐標(biāo)是〔1,2〕,那么這條圓弧所在圓的圓心坐標(biāo)是〔
〕A.
〔0,0〕
B.
〔-1,1〕
C.
〔-1,0〕
D.
〔-1,-1〕
8.某幢建筑物,從10米高的窗口A用水管向外噴水,噴出的水流呈拋物線狀〔拋物線所在平面與墻面垂直,如圖〕.如果拋物線的最高點(diǎn)M離墻1米,離地面米,那么水流落地點(diǎn)B離墻距離是〔
〕A.
2米
B.
3米
C.
4米
D.
5米9.銳角∠AOB如圖,〔1〕在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作弧PQ,交射線OB于點(diǎn)D,連接CD;〔2〕分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于弧PQ點(diǎn)M,N;〔3〕連接OM,MN.
根據(jù)以上作圖過程及所作圖形,以下結(jié)論中錯(cuò)誤的選項(xiàng)是〔
〕A.
∠COM=∠COD
B.
假設(shè)OM=MN,那么∠AOB=20°
C.
MN∥CD
D.
MN=3CD10.如圖,一次函數(shù)y1=2x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),那么函數(shù)y=ax2+〔b﹣2〕x+c的圖象可能是〔
〕A.
B.
C.
D.
二、填空題〔此題有6個(gè)小題,每題5分,共30分〕11.,那么=________.12.從甲地到乙地有A,B,C三條不同的公交線路.為了解早頂峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)〔單位:分鐘〕的數(shù)據(jù),統(tǒng)計(jì)如下:30≤t≤3535<t≤4040<t≤4545<t≤50合計(jì)A59151166124500B5050122278500C4526516723500早頂峰期間,乘坐________〔填“A〞,“B〞或“C〞〕線路上的公交車,從甲地到乙地“用時(shí)不超過45分鐘〞的可能性最大.13.如圖,A,B,C,D為⊙O上的點(diǎn),OC⊥AB于點(diǎn)E.假設(shè)∠CDB=30°,OA=2,那么AB的長(zhǎng)為________.14.如圖的一座拱橋,當(dāng)水面寬AB為12m時(shí),橋洞頂部離水面4m,橋洞的拱形是拋物線,以水平方向?yàn)閤軸,建立平面直角坐標(biāo)系,假設(shè)選取點(diǎn)A為坐標(biāo)原點(diǎn)時(shí)的拋物線解析式是y=﹣〔x﹣6〕2+4,那么選取點(diǎn)B為坐標(biāo)原點(diǎn)時(shí)的拋物線解析式是
.15.如下列圖,把球放在長(zhǎng)方體紙盒內(nèi),球的一局部露出盒外,其截面如下列圖,EF=CD=4cm,那么球的半徑為________cm.16.如圖,直線l:,一組拋物線的頂點(diǎn)B1〔1,y1〕,B2〔2,y2〕,B3〔3,y3〕…Bn〔n,yn〕〔n為正整數(shù)〕依次是直線l上的點(diǎn),這組拋物線與x軸正半軸的交點(diǎn)依次是:A1〔x1,0〕,A2〔x2,0〕,A3〔x3,0〕…,An+1〔xn+1,0〕〔n為正整數(shù)〕,設(shè)x1=d〔0<d<1〕假設(shè)其中一條拋物線的頂點(diǎn)與x軸的兩個(gè)交點(diǎn)構(gòu)成的三角形是直角三角形,那么我們把這條拋物線就稱為:“美麗拋物線〞.那么當(dāng)d〔0<d<1〕的大小變化時(shí)能產(chǎn)生美麗拋物線相應(yīng)的d的值是________.三、解答題〔此題有8個(gè)小題,共80分〕17.拋物線的解析式為y=-3x2+6x+9.〔1〕求它的對(duì)稱軸;〔2〕求它與x軸,y軸的交點(diǎn)坐標(biāo).18.小強(qiáng)同學(xué)報(bào)名參加運(yùn)動(dòng)會(huì),有以下5個(gè)工程可供選擇:徑賽工程:100m,200m,400m〔分別用A1、A2、A3表示〕;田賽工程:跳遠(yuǎn),跳高〔分別用B1、B2表示〕.〔1〕小強(qiáng)同學(xué)從5個(gè)工程中任選一個(gè),恰好是田賽工程的概率為________;〔2〕小強(qiáng)同學(xué)從5個(gè)工程中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽工程和一個(gè)徑賽工程的概率.19.如圖,二次函數(shù)y=ax2+bx+c的圖象過A〔2,0〕,B〔0,﹣1〕和C〔4,5〕三點(diǎn).〔1〕求二次函數(shù)的解析式;〔2〕在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.20.如圖,點(diǎn)A,B的坐標(biāo)分別為(0,0),(4,0),將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′.〔1〕畫出△AB′C′.〔2〕寫出點(diǎn)C′的坐標(biāo).〔3〕求旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的路徑長(zhǎng).21.某地欲搭建一橋,橋的底部?jī)啥碎g的距離AB=L,稱跨度,橋面最高點(diǎn)到AB的距離CD=h稱拱高,當(dāng)L和h確定時(shí),有兩種設(shè)計(jì)方案可供選擇:①拋物線型;②圓弧型.這座橋的跨度L=32米,拱高h(yuǎn)=8米.〔1〕如果設(shè)計(jì)成拋物線型,以AB所在直線為x軸,AB的垂直平分線為y軸建立坐標(biāo)系,求橋拱的函數(shù)解析式;〔2〕如果設(shè)計(jì)成圓弧型,求該圓弧所在圓的半徑;〔3〕在距離橋的一端4米處欲立一橋墩EF支撐,在兩種方案中分別求橋墩的高度.22.某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲2元,就會(huì)少售出20件玩具.〔1〕不妨設(shè)該種品牌玩具的銷售單價(jià)在40元的根底上上漲x元〔x>0〕,請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:銷售單價(jià)〔元〕x+40銷售量y〔件〕________銷售玩具獲得利潤(rùn)w〔元〕________〔2〕在〔1〕問條件下,假設(shè)商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)應(yīng)定為多少元?〔3〕在〔1〕問條件下,假設(shè)玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?23.我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地,我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),A〔4,0〕,B〔﹣4,0〕,D是y軸上的一個(gè)動(dòng)點(diǎn),∠ADC=90°〔A、D、C按順時(shí)針方向排列〕,BC與經(jīng)過A、B、D三點(diǎn)的⊙M交于點(diǎn)E,DE平分∠ADC,連結(jié)AE,BD.顯然△DCE、△DEF、△DAE是半直角三角形.〔1〕求證:△ABC是半直角三角形;〔2〕求證:∠DEC=∠DEA;〔3〕假設(shè)點(diǎn)D的坐標(biāo)為〔0,8〕,求AE的長(zhǎng)。24.如圖,二次函數(shù)y=x2+bx+c經(jīng)過A,B兩點(diǎn),BC⊥x軸于點(diǎn)C,且點(diǎn)A〔﹣1,0〕,C〔4,0〕,AC=BC.〔1〕求拋物線的解析式;〔2〕點(diǎn)E是線段AB上一動(dòng)點(diǎn)〔不與A,B重合〕,過點(diǎn)E作x軸的垂線,交拋物線于點(diǎn)F,當(dāng)線段EF的長(zhǎng)度最大時(shí),求點(diǎn)E的坐標(biāo)及S△ABF;〔3〕點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),是否存在這樣的P點(diǎn),使△ABP成為直角三角形?假設(shè)存在,求出所有點(diǎn)P的坐標(biāo);假設(shè)不存在,請(qǐng)說明理由.
答案解析局部一、選擇題〔此題有10個(gè)小題,每題4分,共40分〕1.【答案】C【解析】【解答】解:∵拋物線的解析式為y=〔x-1〕2+2,
∴拋物線的開口向上,對(duì)稱軸為直線x=1,頂點(diǎn)坐標(biāo)為〔1,2〕,與x軸沒有交點(diǎn),
應(yīng)選項(xiàng)ABD錯(cuò)誤,選項(xiàng)C正確.
故答案為C.
【分析】根據(jù)拋物線的圖象和性質(zhì)得出拋物線的開口向上,對(duì)稱軸為直線x=1,頂點(diǎn)坐標(biāo)為〔1,2〕,與x軸沒有交點(diǎn),即可得出答案.2.【答案】C【解析】【解答】解:∵AB=2cm,
∴圓的直徑是4cm.
故答案為:C.
【分析】根據(jù)圓的概念:在一個(gè)平面內(nèi),線段AB繞它固定的一個(gè)端點(diǎn)A旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)B所形成的圖形叫做圓,線段AB叫做半徑,得出圓的半徑為2cm,即可得出圓的直徑是4cm.3.【答案】A【解析】【解答】解:設(shè)袋子中紅球有x個(gè),根據(jù)題意,得:
解得答:袋子中紅球有5個(gè).
故答案為:A.【分析】設(shè)袋子中紅球有x個(gè),根據(jù)摸出紅球的頻率穩(wěn)定在0.25左右列出關(guān)于x的方程,求出x的值即可得答案.4.【答案】D【解析】【解答】解:∵拋物線的解析式為y=-x2-2x-2=-〔x+1〕2-1,
∴拋物線的開口向下,對(duì)稱軸為直線x=-1,
∴當(dāng)x≤-1時(shí),y隨x的增大而增大.
故答案為:D.
【分析】根據(jù)拋物線的圖象得出拋物線的開口向下,對(duì)稱軸為直線x=-1,再根據(jù)拋物線的性質(zhì)得出在對(duì)稱軸的左側(cè)y隨x的增大而增大,即可得出答案.5.【答案】D【解析】【解答】解:∵y=x2+4x+1=〔x+2〕2-3,
∴把拋物線y=x2+4x+1向右平移2個(gè)單位,向上平移3個(gè)單位得到拋物線y=x2.
故答案為:D.
【分析】先把拋物線的解析式化為y=〔x+2〕2-3,再根據(jù)平移的規(guī)律:左加右減,上加下減,即可得出答案.6.【答案】B【解析】【解答】解:令y=0,得x2-mx-5=0,
∴△=〔-m〕2-4×1×〔-5〕=m2+20≥0,
∴方程x2-mx-5=0有兩個(gè)不相等的實(shí)數(shù)根,
∴二次函數(shù)y=x2-mx-5(m為實(shí)數(shù))的零點(diǎn)的個(gè)數(shù)是2個(gè).
故答案為:B.
【分析】根據(jù)一元二次方程根的判別式得出方程x2-mx-5=0有兩個(gè)不相等的實(shí)數(shù)根,即可得出二次函數(shù)y=x2-mx-5(m為實(shí)數(shù))的零點(diǎn)的個(gè)數(shù)是2個(gè).7.【答案】B【解析】【解答】解:如圖,建立平面直角坐標(biāo)系,
作線段AB和線段BC的垂直平分線相交于點(diǎn)M,
∴點(diǎn)M即為這條圓弧所在圓的圓心,
∴圓心M的坐標(biāo)是〔-1,1〕.
故答案為:B.
【分析】根據(jù)題意建立平面直角坐標(biāo)系,作線段AB和線段BC的垂直平分線相交于點(diǎn)M,得出點(diǎn)M即為這條圓弧所在圓的圓心,根據(jù)圖形即可求解.8.【答案】B【解析】【解答】解:如圖,以地面,墻面所在直線為x軸,y軸建立平面直角坐標(biāo)系,
根據(jù)題意得出拋物線的頂點(diǎn)為M〔1,〕,
∴設(shè)拋物線的解析式為:y=a〔x-1〕2+,
把點(diǎn)A〔0,10〕代入拋物線解析式得:10=a+,
解得:a=-,
∴拋物線的解析式為:y=-〔x-1〕2+,
令y=0時(shí),那么-〔x-1〕2+=0,
解得:x1=-1〔舍去〕,x2=3,
∴OB=3〔米〕,
∴水流下落點(diǎn)B離墻距離為3米.
故答案為:B.
【分析】以地面,墻面所在直線為x軸,y軸建立平面直角坐標(biāo)系,根據(jù)題意利用待定系數(shù)法求出拋物線的解析式,再令y=0,得出一元二次方程,求出方程的解,即可得出答案.9.【答案】D【解析】【解答】解:連接CM,DN,ON,由作圖知CM=CD=DN,
∴∠COM=∠COD,故A正確;
∵ON=OM=MN,
∴△OMN是等邊三角形,
∴∠MON=60°,
∵CM=CD=DN,
∴∠COM=∠AOB=∠BON=20°,故B正確;
∵OM=OC=OD,∠COM=∠AOB=∠BON=20°,
∴∠OCM=∠OCD=80°,
∴∠DCM=160°,
∵∠CMN=∠AON=20°,
∴∠DCM+∠CMN=180°,
∴MN∥CD,故C正確;
∵CM+CD+DN>MN,且CM=CD=DN,
∴MN<3CD,故D錯(cuò)誤.
故答案為:D.
【分析】A.由作圖知CM=CD=DN,根據(jù)圓心角、弧、弦定理得出∠COM=∠COD=∠BON,故A正確;
B.先證出△OMN是等邊三角形,得出∠MON=60°,即可證出∠AOB=20°,故B正確;
C.先求出∠DCM=160°,∠CMN=20°,從而得出∠DCM+∠CMN=180°,即可得出MN∥CD,故C正確;
D.根據(jù)兩點(diǎn)之間線段最短得出CM+CD+DN>MN,即可得出MN<3CD,故D錯(cuò)誤.10.【答案】A【解析】【解答】解:∵一次函數(shù)y1=2x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),
∴一元二次方程ax2+〔b-2〕x+c=0有兩個(gè)不相等的實(shí)數(shù)根,
∴函數(shù)y=ax2+〔b-2〕x+c的圖象與x軸有兩個(gè)交點(diǎn),
∵a>0,->0,
∴->0,
∴函數(shù)y=ax2+〔b-2〕x+c的對(duì)稱軸x=->0,
∴A符合題意.
故答案為:A.
【分析】根據(jù)題意可知:a>0,->0,方程ax2+〔b-2〕x+c=0有兩個(gè)不相等的實(shí)數(shù)根,得出函數(shù)y=ax2+〔b-2〕x+c的圖象與x軸有兩個(gè)交點(diǎn),對(duì)稱軸x=->0,即可得出答案.二、填空題〔此題有6個(gè)小題,每題5分,共30分〕11.【答案】【解析】【解答】解:∵,∴==.
故答案為:.【分析】根據(jù)比例的合比性質(zhì)可直接求解.12.【答案】C【解析】【解答】解:樣本容量相同,C路線上的公交車用時(shí)超過45分鐘的頻數(shù)最小,其頻率也最小,
∴乘坐C路線上的公交車,從甲地到乙地“用時(shí)不超過45分鐘〞的可能性最大.
故答案為:C.
【分析】根據(jù)統(tǒng)計(jì)表獲取信息,樣本容量相同,C路線上的公交車用時(shí)超過45分鐘的頻數(shù)最小,其頻率也最小,即可得出答案.13.【答案】【解析】【解答】解:∵OC⊥AB于點(diǎn)E,
∴AE=BE,,
∴∠AOC=2∠CDB=2×30°=60°,
∴AE=,
∴AB=2AE=.
故答案為:.
【分析】根據(jù)垂徑定理得出AE=BE,,再根據(jù)圓周角定理得出∠AOC=2∠CDB=60°,從而求出AE的長(zhǎng),即可求出AB的長(zhǎng).14.【答案】y=﹣〔x+6〕2+4【解析】【解答】解:由題意可得出:y=a〔x+6〕2+4,將〔﹣12,0〕代入得出,0=a〔﹣12+6〕2+4,解得:a=﹣,∴選取點(diǎn)B為坐標(biāo)原點(diǎn)時(shí)的拋物線解析式是:y=﹣〔x+6〕2+4.故答案為:y=﹣〔x+6〕2+4.【分析】根據(jù)題意得出A點(diǎn)坐標(biāo),進(jìn)而利用頂點(diǎn)式求出函數(shù)解析式即可.15.【答案】2.5【解析】【解答】解:如圖,取EF的中點(diǎn)M,作點(diǎn)M作MN⊥AD于BC于點(diǎn)N,取球心為點(diǎn)O,連接OF,
設(shè)OF=x,那么OM=4-x,MF=2,
在直角三角形OMF中,OM2+MF2=OF2,
∴〔4-x〕2+22=x2,
解得:x=2.5,
∴球的半徑為2.5cm.
故答案為:2.5.
【分析】取EF的中點(diǎn)M,作點(diǎn)M作MN⊥AD于BC于點(diǎn)N,取球心為點(diǎn)O,連接OF,設(shè)OF=x,得出OM=4-x,MF=2,利用勾股定理列出方程,解方程求出x的值,即可得出球的半徑.16.【答案】或【解析】【解答】解:∵直線l的解析式為,
∴當(dāng)x=1時(shí),y=,
∴B1〔1,〕,
當(dāng)x=2時(shí),y=,
∴B2〔2,〕,
∵A1〔d,0〕,A2〔2-d,0〕,
假設(shè)B1為直角頂點(diǎn),那么A1A2的中點(diǎn)〔1,0〕到B1的距離與到A1和A2的距離相等,
∴1-d=,
∴d=,
同理:假設(shè)B2為直角頂點(diǎn),那么A2A3的中點(diǎn)〔2,0〕到B2的距離與到A3和A2的距離相等,
∴2-〔2-d〕=,
∴d=,
假設(shè)B3為直角頂點(diǎn),求出的d為負(fù)數(shù),并且從B3之后的B點(diǎn),求出的d都為負(fù)數(shù),
∴d的值是或.
故答案為:或.
【分析】先求出點(diǎn)B1和B2的坐標(biāo),根據(jù)題意得出A1和A2的坐標(biāo),假設(shè)B1為直角頂點(diǎn),根據(jù)直角三角形斜邊的中線等于斜邊的一半列出等式,求出d的值,同理假設(shè)B1為直角頂點(diǎn),列出等式求出d的值,假設(shè)B3為直角頂點(diǎn),求出的d為負(fù)數(shù),并且從B3之后的B點(diǎn),求出的d都為負(fù)數(shù),即可求解.三、解答題〔此題有8個(gè)小題,共80分〕17.【答案】〔1〕解:∵x=﹣=1,∴對(duì)稱軸為直線x=1
〔2〕解:令x=0,得y=9;令y=0,得x=﹣1或3,故與x軸的交點(diǎn)為〔﹣1,0〕〔3,0〕,與y軸的交點(diǎn)為〔0,9〕.【解析】【分析】〔1〕直接代入對(duì)稱軸的公式即可求解;
〔2〕令x=0求出y的值,得出拋物線與y軸的交點(diǎn)坐標(biāo),令y=0求出x的值,得出拋物線與x軸的交點(diǎn)坐標(biāo).18.【答案】〔1〕
〔2〕解:畫樹狀圖得:∵共有20種等可能的結(jié)果,恰好是一個(gè)田賽工程和一個(gè)徑賽工程的12種情況,恰好是一個(gè)田賽工程和一個(gè)徑賽工程的概率為:【解析】【分析】〔1〕由題意可知一共有5種結(jié)果,田賽工程有2項(xiàng),然后利用概率公式可求解。
〔2〕由題意可知此事件是抽取不放回,列出樹狀圖,再根據(jù)樹狀圖求出所有等可能的結(jié)果數(shù)及恰好是一個(gè)田賽工程和一個(gè)徑賽工程的情況數(shù),然后利用概率公式進(jìn)行計(jì)算即可。19.【答案】〔1〕解:∵二次函數(shù)y=ax2+bx+c的圖象過A〔2,0〕,B〔0,﹣1〕和C〔4,5〕三點(diǎn),∴,∴a=,b=﹣,c=﹣1,∴二次函數(shù)的解析式為y=x2﹣x﹣1
〔2〕解:圖象如圖,當(dāng)一次函數(shù)的值大于二次函數(shù)的值時(shí),x的取值范圍是﹣1<x<4.【解析】【分析】〔1〕把點(diǎn)A〔2,0〕,B〔0,﹣1〕和C〔4,5〕的坐標(biāo)代入拋物線的解析式,求出a,b,c的值,即可求解;
〔2〕畫出直線y=x+1,觀察圖象可得,當(dāng)1<x<4時(shí),一次函數(shù)的圖象在二次函數(shù)的圖象的上面,即可得出答案.20.【答案】〔1〕解:見以下列圖:
〔2〕解:根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)C′的坐標(biāo)為〔﹣2,5〕
〔3〕解:點(diǎn)B所經(jīng)過的路徑長(zhǎng)=.【解析】【分析】〔1〕作出△ABC各點(diǎn)繞點(diǎn)A按逆時(shí)鐘旋轉(zhuǎn)90°所得的對(duì)稱點(diǎn),再順次連接即可;
〔2〕根據(jù)旋轉(zhuǎn)的性質(zhì),直接寫出點(diǎn)C′的坐標(biāo);
〔3〕根據(jù)弧長(zhǎng)公式代入數(shù)值進(jìn)行計(jì)算,即可求解.
21.【答案】〔1〕解:拋物線的解析式為y=ax2+c,又∵拋物線經(jīng)過點(diǎn)C〔0,8〕和點(diǎn)B〔16,0〕,∴0=256a+8,a=﹣.∴拋物線的解析式為y=﹣x2+8〔﹣16≤x≤16〕
〔2〕解:設(shè)弧AB所在的圓心為O,C為弧AB的中點(diǎn),CD⊥AB于D,延長(zhǎng)CD經(jīng)過O點(diǎn),設(shè)⊙O的半徑為R,在Rt△OBD中,OB2=OD2+DB2∴R2=〔R﹣8〕2+162,解得R=20;
〔3〕解:①在拋物線型中設(shè)點(diǎn)F〔x,y〕在拋物線上,x=OE=16﹣4=12,EF=y(tǒng)=3.5米;②在圓弧型中設(shè)點(diǎn)F′在弧AB上,作F′E′⊥AB于E′,OH⊥F′E′于H,那么OH=DE′=16﹣4=12,OF′=R=20,在Rt△OHF′中,HF′==16,∵HE′=OD=OC﹣CD=20﹣8=12,E′F′=HF′﹣HE′=16﹣12=4〔米〕∴在離橋的一端4米處,拋物線型橋墩高3.5米;圓弧型橋墩高4米.【解析】【分析】〔1〕設(shè)拋物線的解析式為y=ax2+c,把點(diǎn)C〔0,8〕和點(diǎn)B〔16,0〕代入拋物線的解析式,求出b,c的值,即可求解;
〔2〕設(shè)弧AB所在的圓心為O,C為弧AB的中點(diǎn),CD⊥AB于D,延長(zhǎng)CD經(jīng)過O點(diǎn),設(shè)⊙O的半徑為R,利用勾股定理求出R的值,即可求解;
〔3〕①在拋物線型中設(shè)點(diǎn)F〔x,y〕在拋物線上,求出EF=3.5,②在圓弧型中設(shè)點(diǎn)F′在弧AB上,作F′E′⊥AB于E′,求出HF′=16,HE′=12,從而求出E′F′=HF′﹣HE′=4,即可求解.22.【答案】〔1〕600﹣10x;﹣10x2+500x+6000
〔2〕解:列方程得:﹣10x2+500x+6000=10000,解得:x1=10,x2=40.∴該玩具銷售單價(jià)應(yīng)定為50元或80元;答:玩具銷售單價(jià)為50元或80元時(shí),可獲得10000元銷售利潤(rùn);
〔3〕解:銷售單價(jià)為在40元的根底上上漲x,根據(jù)題意得,解得:4≤x≤6,W=﹣10x2+500x+6000=﹣10〔x﹣25〕2+12250,∵a=﹣10<0,對(duì)稱軸x=25,∴當(dāng)4≤x≤6時(shí),y隨x增大而增大,∴當(dāng)x=6時(shí),W最大值=8640〔元〕,答:商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)為8640元.【解析】【解答】〔1〕由題意得,銷售量為:y=600﹣10x,銷售玩具獲得利潤(rùn)為:W=〔40+x﹣30〕〔600﹣10x〕=﹣10x2+500x+6000;故答案為:600﹣10x,﹣10x2+500x+6000
【分析】〔1〕根據(jù)題意得出銷售量為y=600﹣10x,再利用利潤(rùn)=一件的利潤(rùn)×銷售量即可求解;
〔2〕根據(jù)題意列出方程,解方程求出x的值,即可求解;
〔3〕根據(jù)題意列出粗不等式組,求出不等式組的解集,再根據(jù)二次函數(shù)的性質(zhì)求解即可.23.【答案】〔1〕證明:∵∠ADC=90°,DE平分∠ADC,
∴∠ADE=45°,∵∠ABE=∠ADE=45°,
∴△ABC是半直角三角形
〔2〕證明:∵OM⊥AB,OA=OB,
∴AD=BD,
∴∠DAB=∠DBA,∵∠DEB=∠DAB,
∴∠DBA=∠DEB,∵D、B、A、E四點(diǎn)共圓,
∴∠DBA+∠DEA=180°,∵∠DEB+∠DEC=180°,
∴∠DEA=∠DEC;
〔3〕解:如圖1,連接AM,ME,設(shè)⊙M的半徑為r,∵點(diǎn)D的坐標(biāo)為〔0,8〕,∴OM=8﹣r,由OM2+OA2=MA2得:〔8﹣r〕2+42=r2,解得r=5,
∴⊙M的半徑為5,∵∠ABE=45°
∴∠EMA=2∠ABE=90°,∴EA2=MA2+ME2=52+52=50,∴.【解析】【分析】〔1〕根據(jù)角平分線的定義得出∠ADE=45°,根據(jù)圓周角定理得出∠ABE=∠ADE=45°,根據(jù)新定義即可得出△ABC是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球卡車磅秤租賃行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)折疊腳凳行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球食品級(jí)再生ABS樹脂行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球?qū)嶒?yàn)室氣體檢測(cè)系統(tǒng)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 二零二五年度環(huán)保節(jié)能技術(shù)投資出資協(xié)議書4篇
- 酒店健身房設(shè)計(jì)與裝修合同
- 2025版?zhèn)€人股權(quán)變更登記與轉(zhuǎn)讓協(xié)議書3篇
- 豪華住宅裝修貸款協(xié)議
- 2025年度個(gè)人住宅門窗智能控制系統(tǒng)集成合同2篇
- 2024-2026年中國(guó)IT運(yùn)維服務(wù)行業(yè)市場(chǎng)全景調(diào)研及投資規(guī)劃建議報(bào)告
- 廣東省深圳市2024-2025學(xué)年高一上學(xué)期期末考試英語試題(含答案)
- 開工第一課安全培訓(xùn)內(nèi)容
- 2024年可行性研究報(bào)告投資估算及財(cái)務(wù)分析全套計(jì)算表格(含附表-帶只更改標(biāo)紅部分-操作簡(jiǎn)單)
- 經(jīng)顱磁刺激增強(qiáng)定神狀態(tài)的研究
- 六年級(jí)人教版上冊(cè)數(shù)學(xué)計(jì)算題練習(xí)題(及答案)100解析
- 第18課《文言文二則 鐵杵成針》(學(xué)習(xí)任務(wù)單)- 四年級(jí)語文下冊(cè)部編版
- 《功能材料概論》期末考試試卷及參考答案2023年12月
- 機(jī)器設(shè)備抵押合同
- 超聲科質(zhì)量控制制度及超聲科圖像質(zhì)量評(píng)價(jià)細(xì)則
- 腹瀉的護(hù)理課件
- 初中物理滬粵版八年級(jí)下冊(cè)《第六章 力和機(jī)械》章節(jié)練習(xí)(含答案)
評(píng)論
0/150
提交評(píng)論