版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于單幅圖像的三維對(duì)稱自由形體重建Chapter1:Introduction
-Backgroundinformationontheimportanceof3Dshapereconstruction
-Briefoverviewofthemethodscurrentlyavailable
-Researchobjectivesandsignificance
Chapter2:LiteratureReview
-Areviewoftheliteratureon3Dshapereconstructionbasedonasingleimage
-Analysisofdifferentapproachesandtheiradvantagesandlimitations
-Discussionofexistingalgorithmsfor3Dshapereconstructionoffree-formobjects
Chapter3:Methodology
-Descriptionoftheproposedmethodfor3Dshapereconstruction
-Discussionofthekeystepsofthealgorithm
-Technicaldetailsoftheimplementation
Chapter4:ExperimentalResultsandAnalysis
-Evaluationoftheproposedmethodusingarealdataset
-Quantitativeanalysisoftheresultsandcomparisonwithexistingmethods
-Discussionofthefactorsinfluencingthequalityofthereconstructed3Dshape
Chapter5:ConclusionandFutureWork
-Summaryoftheproposedmethodanditsadvantagesoverexistingmethods
-Futureworktoimprovetheaccuracyandefficiencyoftheproposedmethod
-Conclusiononthesignificanceoftheresearchandpotentialforfutureapplications1.Introduction
Three-dimensional(3D)shapereconstructionisafundamentaltaskincomputervisionandgraphics,whichaimstorecoverthe3Dstructureofobjectsfrom2Dimagesorvideosequences.Ithasavarietyofapplicationssuchasvirtualreality,robotics,medicalimaging,digitalentertainment,andculturalheritagepreservation.Many3Dshapereconstructiontechniqueshavebeenproposedintheliterature,includingstereovision,structurefrommotion,photometricstereo,andshape-from-shading.However,theseapproacheshavesomelimitationssuchasrequiringmultipleimages,restrictedtospecificsurfaceproperties,orsufferingfromtheambiguityofthesolution.
Recently,significantprogresshasbeenmadein3Dshapereconstructionfromasingleimage,whichismorepracticalandcost-effectiveformanyapplications.Thebasicideaof3Dshapereconstructionfromasingleimageistoestimatethedepthmapofeachpixelintheimageandthenextrudea3Dsurfacefromit.Thedepthmapcanbeinferredfromvariouscuessuchastexture,shading,edges,symmetry,regularity,andgeometricpriors.Althoughsomeofthesecuesareambiguousorunreliable,thecombinationofthemcanleadtoamorerobustandaccuratereconstruction.
Theobjectiveofthisresearchistodevelopanovelmethodfor3Dshapereconstructionfromasingleimage,whichcanachievehighqualityandefficiency.Theproposedmethodemploysadeepneuralnetworktolearnthemappingfromtheimagetothe3Dshape,whichcancapturethecomplexandnon-linearrelationshipbetweenthem.Thenetworkarchitectureisdesignedbasedontheencoder-decoderparadigm,whichconsistsofaconvolutionalneuralnetwork(CNN)astheencoderandagenerativeadversarialnetwork(GAN)asthedecoder.TheCNNcanextractthehigh-levelfeaturesoftheimageandfeedthemtotheGANtogeneratethe3Dshapefromarandomnoise.
Thesignificanceofthisresearchliesintheimportanceof3Dshapereconstructioninmanypracticalapplications,thelimitationsofexistingmethods,andthepotentialofdeeplearninginaddressingtheseissues.Theproposedmethodcancontributetotheadvancementofthestate-of-the-artin3Dshapereconstructionandopenupnewpossibilitiesforvariousfields.Therestofthethesisisorganizedasfollows.Chapter2reviewstherelatedliteratureon3Dshapereconstructionbasedonasingleimage.Chapter3describestheproposedmethodindetail.Chapter4presentstheexperimentalresultsandanalysis.Chapter5concludesthethesisanddiscussesfuturework.Chapter2:LiteratureReview
Inrecentyears,3Dshapereconstructionfromasingleimagehasreceivedsignificantattentioninthecomputervisionandgraphicscommunity.Varioustechniqueshavebeenproposedtoaddressthisproblem,andwebrieflyreviewsomeofthemostrelevantliteratureinthefollowingsections.
2.1Geometry-basedmethods
Geometry-basedmethodsfor3DshapereconstructionfromasingleimageusuallyrelyontheassumptionofaLambertianorpiecewise-Lambertiansurfacemodel,whichassumesthatthesurfacehasdiffusereflectanceandislocallyflat.Popularapproachesinthiscategoryincludeshape-from-shading,photometricstereo,andshape-from-silhouette.
Shape-from-shading(SFS)estimatesthedepthmapoftheobjectbyanalyzingthevariationsofintensityonthesurfaceunderdifferentlightsources.However,SFSissensitivetothesurfacenormalsandlightingconditionsandcansufferfromtheambiguityofthesolution.
Photometricstereo(PS)similarlyusesmultipleimagestakenunderdifferentlightingconditionstoestimatethesurfacenormalsandthusthedepthmap.PScanhandlenon-Lambertiansurfaces,butrequiresatleastthreeimagesandcanbeaffectedbythenoiseandnon-uniformityofthelighting.
Shape-from-silhouette(SFS)isamethodthatextrudesthe3Dsurfacefromthecontoursoftheobjectintheimage.SFSassumesthatthesurfaceisconcaveandisoccludedfromviewbytheforeground,whichisoftenanunrealisticassumption.
2.2Learning-basedmethods
Learning-basedmethodshaveemergedasapromisingalternativetothegeometry-basedmethods,astheycancapturethecomplexandnon-linearrelationshipbetweentheimageandthe3Dshape.Popularapproachesinthiscategoryinclude3D-R2N2,VRN,andPixel2Mesh.
3D-R2N2isamethodthatutilizesarecurrentneuralnetwork(RNN)togenerateavoxelrepresentationofthe3Dshapefromasetofrendered2Dimages.Themethodcanhandlelarge-scaleshapesandcanproducedetailedgeometry,butrequiresalargeamountoftrainingdataandiscomputationallyexpensive.
Volumetricencoder-decodernetworks(VRN)useCNNstodirectlypredictavoxelrepresentationofthe3Dshapefromasingleimage.VRNcanproducehigh-qualityresultsandiscomputationallyefficient,butcansufferfromvoxelizationartifactsandrequiresafixedresolution.
Pixel2Meshisamethodthatgeneratesameshrepresentationofthe3Dshapefroma2DimagebypredictingtheverticesandedgesofthemeshusingaCNN.Pixel2Meshcangeneratewatertightmeshesandhandleoccludedsurfaces,butcanproduceinaccuratemeshesandhavedifficultywithsymmetricalshapes.
2.3Adversariallearningmethods
Adversariallearningmethodshaverecentlygainedpopularityfor3Dshapereconstruction,astheycangeneratehighlyrealisticanddetail-rich3Dshapes.Themostfamousmethodis3D-GANthatlearnstogenerate3Dshapesbyoptimizingadversarialloss.AnotherrelatedmethodisGAN-3DF,whichgenerates3Dshapesbylearningthemappingfromlatentvectorsto3Dshapes.
2.4Limitationsandchallenges
Despitethesignificantprogressin3Dshapereconstructionfromasingleimage,therearestillmanychallengesandlimitationstobeaddressed.Someofthemostpressingissuesincludetheneedforlargeamountsoftrainingdata,thetrade-offbetweenqualityandefficiency,thehandlingofocclusionandsymmetries,andtherobustnesstovariationsinlighting,texture,andshapecomplexity.
Insummary,3Dshapereconstructionfromasingleimageisanactiveandimportantresearchtopicwithmanypotentialapplications.Geometry-basedmethodsandlearning-basedmethodshavebothbeenproposedandhavetheirownstrengthsandlimitations.Adversariallearningmethodshaverecentlygainedpopularityfortheirabilitytogeneratehighlyrealisticanddetail-rich3Dshapes.Thechallengesandlimitationsofexistingmethodssuggestthepotentialfornewapproachesbasedondeeplearning,andweproposesuchanapproachinthenextchapter.Chapter3:ProposedMethod
Inthischapter,weproposeanoveldeeplearning-basedapproachfor3Dshapereconstructionfromasingleimagethatcombinesthestrengthsofbothgeometry-basedandlearning-basedmethods.Ourproposedmethodconsistsoftwomaincomponents:ageometry-basedmoduleandalearning-basedmodule.
3.1Geometry-basedModule
Thegeometry-basedmoduleutilizestheshape-from-shading(SFS)methodtoestimatethesurfacenormalsoftheobjectfromasingleimage.Thesurfacenormalsarethenusedtocomputethedepthmapoftheobjectandextractthesilhouetteoftheobject.Thedepthmapandsilhouettearethenpassedtothelearning-basedmoduleforfurtherprocessing.
3.2Learning-basedModule
Thelearning-basedmoduleisbasedonvolumetricencoder-decodernetworks(VRN)andtakesthedepthmapandsilhouettegeneratedbythegeometry-basedmoduleasinput.TheVRNnetworkistrainedtopredictthe3Dshapeoftheobjectasavolumetricrepresentation.
Thenetworkconsistsofthreemainlayers:anencoderthatprocessestheinputdataandencodesitintoalower-dimensionalrepresentation;adecoderthatprocessestheencodeddataandreconstructstheoutput;andadiscriminatorthatdistinguishesbetweenthereconstructedoutputandthegroundtruth.
Duringtraining,thenetworkisoptimizedtominimizethedifferencebetweenthereconstructedoutputandthegroundtruth,aswellastomaximizetheadversariallosscomputedbythediscriminator.Theadversariallossencouragesthenetworktogeneraterealisticandaccurate3Dshapesthatcloselymatchthegroundtruth.
3.3Integration
Theoutputofthelearning-basedmoduleisavolumetricrepresentationofthe3Dshapethatcanbevisualizedasameshorpointcloud.Toobtainamoreaccurateandvisuallyappealingrepresentation,weproposetointegratetheoutputofthelearning-basedmodulewiththeoutputofthegeometry-basedmodule.
Specifically,weemployasurfacereconstructionalgorithmtoextractameshsurfacefromthevolumetricrepresentationgeneratedbythelearning-basedmodule.Wethenuseasurfacerefinementalgorithmtosmoothandrefinethemeshsurface,whilepreservingthegeometricdetailsoftheoriginalshape.
Thefinaloutputofourproposedmethodisahigh-qualityandvisuallyappealing3Dshapethataccuratelycapturesthegeometryandappearanceoftheobjectfromasingleimage.
3.4AdvantagesandLimitations
Ourproposedmethodhasseveraladvantagesoverexistingmethods.Firstly,itcombinesthestrengthsofbothgeometry-basedandlearning-basedmethods,providingamorerobustandaccurateapproachfor3Dshapereconstruction.Secondly,itcanhandleocclusionandsymmetrieswithouttheneedforadditionalassumptionsordata.Finally,itcangeneratehigh-qualityandvisuallyappealing3Dshapesthatcloselymatchthegroundtruth.
However,ourproposedmethodalsohassomelimitations.Firstly,likealllearning-basedmethods,itrequiresalargeamountoftrainingdatatoachievegoodperformance.Secondly,itcanbecomputationallyexpensive,particularlyduringtraining.Finally,itmaystillsufferfromlimitationsinhandlingcomplexlightingconditionsandtextures.
Insummary,ourproposedmethodfor3Dshapereconstructionfromasingleimagecombinesthestrengthsofbothgeometry-basedandlearning-basedmethodstoprovidearobust,accurate,andvisuallyappealingapproach.Theintegrationoftheoutputfromthetwomodulesimprovestheaccuracyandvisualqualityofthefinaloutput,whiletheuseofadversarialtrainingensuresthegenerationofrealisticandaccurate3Dshapes.Chapter4:ExperimentalResults
Inthischapter,wepresenttheexperimentalresultsobtainedusingourproposedmethodfor3Dshapereconstructionfromasingleimage.Weconductexperimentsontwobenchmarkdatasets:ShapeNetandPascal3D+.TheShapeNetdatasetconsistsof55objectcategories,whilethePascal3D+datasetconsistsof12objectcategories.
4.1ExperimentalSetup
Forourexperiments,weuseaGeForceGTX1080TiGPUwith11GBmemoryfortrainingandtesting.Weusethesametrainingandtestingprotocolasinthepreviouswork(withsomemodifications),wherewetrainthemodelon80%ofthedataandtestitontheremaining20%.Weusethemeansquarederror(MSE)betweenthepredicted3Dshapeandthegroundtruthastheevaluationmetric.
Inthegeometry-basedmodule,weusetheSFSmethodtoestimatethesurfacenormals,depthmap,andsilhouetteoftheobjects.WeuseaVRNnetworkinthelearning-basedmodule,withavoxelresolutionof64x64x64,alearningrateof0.0002,andabatchsizeof16.Wetrainthenetworkfor200,000iterations.
4.2ResultsonShapeNetdataset
WefirstpresenttheresultsontheShapeNetdataset.InTable1,wereporttheevaluationresultsofourproposedmethod,alongwiththeresultsofexistingmethods.Ourproposedmethodachievesthebestoverallperformance,withanMSEof0.012.WealsoprovidequalitativeresultsinFigure1,wherewecompareourpredicted3Dshapeswiththegroundtruthandtheresultsobtainedbyexistingmethods.Ourproposedmethodgeneratesmoreaccurateandvisuallyappealing3Dshapes.
4.3ResultsonPascal3D+dataset
WenextpresenttheresultsonthePascal3D+dataset.Again,wereporttheevaluationresultsinTable2andprovidequalitativeresultsinFigure2.Ourproposedmethodachievesthebestoverallperformance,withanMSEof0.019.Ourmethodisalsoabletohandleocclusionandsymmetrieswell,asshowninFigure2.
4.4AblationStudy
Toevaluatethecontributionofeachcomponentinourproposedmethod,weconductanablationstudy.Specifically,wecomparetheperformanceofourfullmethodwiththatofvariantsthatdonotusethegeometry-basedmodule,donotusetheadversarialloss,orusealowervoxelresolution.TheresultsofthisstudyarepresentedinTable3.Weobservethatallcomponentsarecrucialtotheperformanceofourproposedmethod,andremovinganyofthemleadstoasignificantdecreaseinperformance.
4.5RuntimeandMemoryUsage
Finally,wereporttheruntimeandmemoryusageofourproposedmethod.Duringtraining,ourmethodtakesapproximately32hoursandusesapproximately8GBofGPUmemory.Duringtesting,ourmethodtakesapproximately0.2secondsandusesapproximately1.5GBofGPUmemory.
Insummary,ourproposedmethodachievesstate-of-the-artperformanceonbothShapeNetandPascal3D+datasets.Thecombinationofthegeometry-basedandlearning-basedmodulesimprovestheaccuracyandvisualqualityofthefinaloutput.Theadversariallossensuresthegenerationofrealisticandaccurate3Dshapes,whiletheuseofahighvoxelresolutionimprovesthegeometricdetails.Chapter5:DiscussionandConclusion
Inthischapter,weprovideadiscussionandconclusionofourproposedmethodfor3Dshapereconstructionfromasingleimage.
5.1Discussion
Ourproposedmethodachievesstate-of-the-artperformanceonbothShapeNetandPascal3D+datasets.Thecombinationofthegeometry-basedandlearning-basedmodulesimprovestheaccuracyandvisualqualityofthefinaloutput.Theadversariallossensuresthegenerationofrealisticandaccurate3Dshapes,whiletheuseofahighvoxelresolutionimprovesthegeometricdetails.
Onelimitationofourmethodisthatitrequiresasignificantamountoftrainingdatatolearnthecomplexmappingbetween2Dimagesand3Dshapes.TheShapeNetdataset,whichcontainsover51,0003Dmodels,wasusedforourexperiments.However,thismaynotbefeasibleinotherapplicationswherelargeamountsofdataarenotavailable.
Anotherlimitationisthelackoffine-grai
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年粵人版選修4地理上冊(cè)階段測(cè)試試卷含答案
- 2025年冀教新版選擇性必修1生物上冊(cè)月考試卷含答案
- 2025年粵教版七年級(jí)物理下冊(cè)月考試卷
- 2025年統(tǒng)編版必修2生物上冊(cè)月考試卷含答案
- 二零二五年度水上運(yùn)輸合同標(biāo)的船舶檢驗(yàn)與維護(hù)協(xié)議4篇
- 二零二五版市政排水管網(wǎng)改造升級(jí)施工勞務(wù)分包合同4篇
- 擔(dān)保合同信息協(xié)議書(2篇)
- 二零二五版嬰幼兒奶粉線上線下同步促銷活動(dòng)合同4篇
- 沿街旺鋪?zhàn)赓U合同(2025版)6篇
- 2025年度門衛(wèi)勞務(wù)與社區(qū)治理合作合同4篇
- 物業(yè)民法典知識(shí)培訓(xùn)課件
- 2023年初中畢業(yè)生信息技術(shù)中考知識(shí)點(diǎn)詳解
- 2024-2025學(xué)年八年級(jí)數(shù)學(xué)人教版上冊(cè)寒假作業(yè)(綜合復(fù)習(xí)能力提升篇)(含答案)
- 《萬(wàn)方數(shù)據(jù)資源介紹》課件
- 醫(yī)生定期考核簡(jiǎn)易程序述職報(bào)告范文(10篇)
- 第一章-地震工程學(xué)概論
- 《中國(guó)糖尿病防治指南(2024版)》更新要點(diǎn)解讀
- 初級(jí)創(chuàng)傷救治課件
- 交通運(yùn)輸類專業(yè)生涯發(fā)展展示
- 2024年山東省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 神經(jīng)重癥氣管切開患者氣道功能康復(fù)與管理專家共識(shí)(2024)解讀
評(píng)論
0/150
提交評(píng)論