山西省稷山縣達標名校2023屆學業(yè)水平考試數學試題模擬卷一含解析_第1頁
山西省稷山縣達標名校2023屆學業(yè)水平考試數學試題模擬卷一含解析_第2頁
山西省稷山縣達標名校2023屆學業(yè)水平考試數學試題模擬卷一含解析_第3頁
山西省稷山縣達標名校2023屆學業(yè)水平考試數學試題模擬卷一含解析_第4頁
山西省稷山縣達標名校2023屆學業(yè)水平考試數學試題模擬卷一含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省稷山縣達標名校2023屆學業(yè)水平考試數學試題模擬卷一注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列計算結果正確的是()A. B.C. D.2.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣13.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.4.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.5.某種商品的進價為800元,出售時標價為1200元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折6.的整數部分是()A.3 B.5 C.9 D.67.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F,則DE的長是()A. B. C.1 D.8.下列運算正確的是()A. B.C. D.9.如圖,△ABC是等邊三角形,點P是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.310.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.72二、填空題(本大題共6個小題,每小題3分,共18分)11.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長為________.12.不等式>4﹣x的解集為_____.13.因式分解:y3﹣16y=_____.14.三角形兩邊的長是3和4,第三邊的長是方程x2﹣14x+48=0的根,則該三角形的周長為_____.15.已知且,則=__________.16.如圖,矩形ABCD中,AD=5,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是___________.三、解答題(共8題,共72分)17.(8分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.18.(8分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點

E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.19.(8分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據圖中提供的信息完成下列問題:(1)求被調查學生的人數,并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數;(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?20.(8分)某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關于x的函數關系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?21.(8分)觀察下列多面體,并把下表補充完整.名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數61012棱數912面數58觀察上表中的結果,你能發(fā)現、、之間有什么關系嗎?請寫出關系式.22.(10分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.23.(12分)如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.24.如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉90°得到,且點E恰好在拋物線上,請求出點E的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用冪的乘方、同底數冪的乘法、合并同類項及零指數冪的定義分別計算后即可確定正確的選項.【詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【點睛】本題考查了冪的運算性質及特殊角的三角函數值的知識,解題的關鍵是能夠利用有關法則進行正確的運算,難度不大.2、B【解析】

∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.3、A【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、C【解析】

列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結果數,繼而根據概率公式計算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【點睛】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.5、B【解析】

設可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點睛】本題考查的是一元一次不等式的應用,解此類題目時注意利潤和折數,計算折數時注意要除以2.解答本題的關鍵是讀懂題意,求出打折之后的利潤,根據利潤率不低于5%,列不等式求解.6、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.7、D【解析】

過F作FH⊥AE于H,根據矩形的性質得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據平行四邊形的性質得到AF=CE,根據相似三角形的性質得到,于是得到AE=AF,列方程即可得到結論.【詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【點睛】本題主要考查平行四邊形的性質及三角形相似,做合適的輔助線是解本題的關鍵.8、D【解析】

由去括號法則:如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.9、C【解析】

過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內角都相等,且都等于60°.10、B【解析】

根據題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.12、x>1.【解析】

按照去分母、去括號、移項、合并同類項、系數化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項合并得:3x>12,解得:x>1,故答案為:x>1【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.13、y(y+4)(y﹣4)【解析】試題解析:原式故答案為點睛:提取公因式法和公式法相結合因式分解.14、13【解析】

利用因式分解法求出解已知方程的解確定出第三邊,即可求出該三角形的周長.【詳解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,當x=6時,三角形周長為3+4+6=13,當x=8時,3+4<8不能構成三角形,舍去,綜上,該三角形的周長為13,故答案為13【點睛】此題考查了解一元二次方程-因式分解法,以及三角形三邊關系,熟練掌握運算法則是解本題的關鍵.15、【解析】分析:根據相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關鍵是理解相似三角形的面積比等于相似比的平方.16、5【解析】

作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q,此時QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解決問題.【詳解】解:作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q.∵四邊形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此時QA+QP最短(垂線段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE?sin60°=10×=5.故答案為5.【點睛】本題考查矩形的性質、最短問題、銳角三角函數等知識,解題的關鍵是利用對稱以及垂線段最短找到點P、Q的位置,屬于中考??碱}型.三、解答題(共8題,共72分)17、(1)證明見解析;(2)CD的長為2.【解析】

(1)首先證得△ADE≌△CDE,由全等三角形的性質可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據30°的性質和勾股定理可求出EF和DF的長,在Rt△CEF中,根據勾股定理可求出CF的長,從而可求CD的長.【詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【點睛】本題考查了全等三角形的判定與性質,平行線的性質,菱形的判定,含30°的直角三角形的性質,勾股定理.證明AD=BC是解(1)的關鍵,作EF⊥CD于F,構造直角三角形是解(2)的關鍵.18、(1);(2)與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解析】

利用二次函數圖象上點的坐標特征可得出點A、B的坐標,結合即可得出關于a的一元一次方程,解之即可得出結論;由點A、B的坐標可得出直線AB的解析式待定系數法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結合即可得出S關于x的函數關系式,再利用二次函數的性質即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結論;當時,由點B的縱坐標可得出點E的縱坐標為4,結合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結論綜上即可得出結論.【詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當時,S取最大值,最大值為18,此時點E的坐標為,與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設點D的坐標為,則點E的坐標為,,當時,,,,為等腰直角三角形.,即,解得:舍去,,點D的坐標為;當時,點E的縱坐標為4,,解得:,舍去,點D的坐標為.綜上所述:存在點D,使得和相似,此時點D的坐標為或.故答案為:(1);(2)與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【點睛】本題考查了二次函數圖象上點的坐標特征、一次函數圖象上點的坐標特征、三角形的面積、二次函數的性質、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關鍵是:利用二次函數圖象上點的坐標特征求出點A、B的坐標;利用三角形的面積找出S關于x的函數關系式;分及兩種情況求出點D的坐標.19、(1)圖見解析;(2)126°;(3)1.【解析】

(1)利用被調查學生的人數=了解程度達到B等的學生數÷所占比例,即可得出被調查學生的人數,由了解程度達到C等占到的比例可求出了解程度達到C等的學生數,再利用了解程度達到A等的學生數=被調查學生的人數-了解程度達到B等的學生數-了解程度達到C等的學生數-了解程度達到D等的學生數可求出了解程度達到A等的學生數,依此數據即可將條形統(tǒng)計圖補充完整;(2)根據A等對應的扇形圓心角的度數=了解程度達到A等的學生數÷被調查學生的人數×360°,即可求出結論;(3)利用該?,F有學生數×了解程度達到A等的學生所占比例,即可得出結論.【詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統(tǒng)計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統(tǒng)計圖中的A等對應的扇形圓心角為126°.(3)1500×=1(人).答:該校學生對政策內容了解程度達到A等的學生有1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,觀察條形統(tǒng)計圖及扇形統(tǒng)計圖,找出各數據,再利用各數量間的關系列式計算是解題的關鍵.20、(Ⅰ);(Ⅱ)①至少要購進20件甲商品;②售完這些商品,則商場可獲得的最大利潤是2800元.【解析】

(Ⅰ)根據總利潤=(甲的售價-甲的進價)×甲的進貨數量+(乙的售價-乙的進價)×乙的進貨數量列關系式并化簡即可得答案;(Ⅱ)①根據總成本最多投入8000元列不等式即可求出x的范圍,即可得答案;②根據一次函數的增減性確定其最大值即可.【詳解】(Ⅰ)根據題意得:則y與x的函數關系式為.(Ⅱ),解得.∴至少要購進20件甲商品.,∵,∴y隨著x的增大而減小∴當時,有最大值,.∴若售完這些商品,則商場可獲得的最大利潤是2800元.【點睛】本題考查一次函數的實際應用及一元一次不等式的應用,熟練掌握一次函數的性質是解題關鍵.21、8,15,18,6,7;【解析】分析:結合三棱柱、四棱柱和五棱柱的特點,即可填表,根據已知的面、頂點和棱與n棱柱的關系,可知n棱柱一定有(n+1)個面,1n個頂點和3n條棱,進而得出答案,利用前面的規(guī)律得出a,b,c之間的關系.詳解:填表如下:名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數a681011棱數b9111518面數c5678根據上表中的規(guī)律判斷,若一個棱柱的底面多邊形的邊數為n,則它有n個側面,共有n+1個面,共有1n個頂點,共有3n條棱;故a,b,c之間的關系:a+c-b=1.點睛:此題通過研究幾個棱柱中頂點數、棱數、面數的關系探索出n棱柱中頂點數、棱數、面數之間的關系(即歐拉公式),掌握常見棱柱的特征,可以總結一般規(guī)律:n棱柱有(n+1)個面,1n個頂點和3n條棱是解題關鍵.22、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數;②根據四邊形BFDP是正方形,可以求得∠DAE的度數.【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質、切線的性質、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱形的性質和正方形的性質解答.23、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】

(1)將A代入反比例函數中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標,理由過兩點之間距離公式求出AB的長,求出P點坐標,表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論