高考圓錐曲線解題技巧總結(jié)_第1頁
高考圓錐曲線解題技巧總結(jié)_第2頁
高考圓錐曲線解題技巧總結(jié)_第3頁
高考圓錐曲線解題技巧總結(jié)_第4頁
高考圓錐曲線解題技巧總結(jié)_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新課標(biāo)高考數(shù)學(xué)分析及解題技巧匯編第五篇高考解析幾何萬能解題套路解析幾何——把代數(shù)的演繹方法引入幾何學(xué),用代數(shù)方法來解決幾何問題。與圓錐曲線有關(guān)的幾種典型題,如圓錐曲線的弦長求法、與圓錐曲線有關(guān)的最值(極值)問題、與圓錐曲線有關(guān)的證明問題以及圓錐曲線與圓錐曲線有關(guān)的證明問題等,在圓錐曲線的綜合應(yīng)用中經(jīng)常見到。第一部分:基礎(chǔ)知識(shí)1.概念特別提醒:(1)在求解橢圓、雙曲線問題時(shí),首先要判斷焦點(diǎn)位置,焦點(diǎn)F,F(xiàn)的位置,是橢圓、雙曲線的定位條件,它決定橢圓、雙曲線標(biāo)準(zhǔn)方程的類型,而方程中的兩個(gè)參數(shù),確定橢圓、雙曲線的形狀和大小,是橢圓、雙曲線的定形條件;在求解拋物線問題時(shí),首先要判斷開口方向;(2)在橢圓中,最大,,在雙曲線中,最大,。2.圓錐曲線的幾何性質(zhì):(1)橢圓(以()為例):①范圍:;②焦點(diǎn):兩個(gè)焦點(diǎn);③對(duì)稱性:兩條對(duì)稱軸,一個(gè)對(duì)稱中心(0,0),四個(gè)頂點(diǎn),其中長軸長為2,短軸長為2;④準(zhǔn)線:兩條準(zhǔn)線;⑤離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。(2)雙曲線(以()為例):①范圍:或;②焦點(diǎn):兩個(gè)焦點(diǎn);③對(duì)稱性:兩條對(duì)稱軸,一個(gè)對(duì)稱中心(0,0),兩個(gè)頂點(diǎn),其中實(shí)軸長為2,虛軸長為2,特別地,當(dāng)實(shí)軸和虛軸的長相等時(shí),稱為等軸雙曲線,其方程可設(shè)為;④準(zhǔn)線:兩條準(zhǔn)線;⑤離心率:,雙曲線,等軸雙曲線,越小,開口越小,越大,開口越大;⑥兩條漸近線:。(3)拋物線(以為例):①范圍:;②焦點(diǎn):一個(gè)焦點(diǎn),其中的幾何意義是:焦點(diǎn)到準(zhǔn)線的距離;③對(duì)稱性:一條對(duì)稱軸,沒有對(duì)稱中心,只有一個(gè)頂點(diǎn)(0,0);④準(zhǔn)線:一條準(zhǔn)線;⑤離心率:,拋物線。3.直線與圓錐曲線的位置關(guān)系:判斷的大小。特別提醒:(1)直線與雙曲線、拋物線只有一個(gè)公共點(diǎn)時(shí)的位置關(guān)系有兩種情形:相切和相交。如果直線與雙曲線的漸近線平行時(shí),直線與雙曲線相交,但只有一個(gè)交點(diǎn);如果直線與拋物線的軸平行時(shí),直線與拋物線相交,也只有一個(gè)交點(diǎn);(2)過雙曲線=1外一點(diǎn)的直線與雙曲線只有一個(gè)公共點(diǎn)的情況如下:①P點(diǎn)在兩條漸近線之間且不含雙曲線的區(qū)域內(nèi)時(shí),有兩條與漸近線平行的直線和分別與雙曲線兩支相切的兩條切線,共四條;②P點(diǎn)在兩條漸近線之間且包含雙曲線的區(qū)域內(nèi)時(shí),有兩條與漸近線平行的直線和只與雙曲線一支相切的兩條切線,共四條;③P在兩條漸近線上但非原點(diǎn),只有兩條:一條是與另一漸近線平行的直線,一條是切線;④P為原點(diǎn)時(shí)不存在這樣的直線;(3)過拋物線外一點(diǎn)總有三條直線和拋物線有且只有一個(gè)公共點(diǎn):兩條切線和一條平行于對(duì)稱軸的直線。4、焦半徑(圓錐曲線上的點(diǎn)P到焦點(diǎn)F的距離)的計(jì)算方法:利用圓錐曲線的第二定義,轉(zhuǎn)化到相應(yīng)準(zhǔn)線的距離,即焦半徑,其中表示P到與F所對(duì)應(yīng)的準(zhǔn)線的距離。5、弦長公式:若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),分別為A、B的縱坐標(biāo),則,特別地,焦點(diǎn)弦(過焦點(diǎn)的弦):焦點(diǎn)弦的弦長的計(jì)算,一般不用弦長公式計(jì)算,而是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。例過拋物線的焦點(diǎn)作傾斜角為的直線與拋物線交于A、B兩點(diǎn),旦|AB|=8,求傾斜角.特別提醒:因?yàn)槭侵本€與圓錐曲線相交于兩點(diǎn)的必要條件,故在求解有關(guān)弦長、半軸上的焦點(diǎn),過且斜率為的直線與交與兩點(diǎn),點(diǎn)滿足.(I)證明:點(diǎn)在上;(II)設(shè)點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,證明:四點(diǎn)在同一圓上.【命題意圖】本題考查直線方程、平面向量的坐標(biāo)運(yùn)算、點(diǎn)與曲線的位置關(guān)系、曲線交點(diǎn)坐標(biāo)求法及四點(diǎn)共圓的條件?!窘馕觥?I),的方程為代入并化簡得.

…………2分設(shè),則

由題意得所以點(diǎn)的坐標(biāo)為.

滿足方程,故點(diǎn)在橢圓上…6分(II)由和題設(shè)知,的垂直平分線的方程為.

①設(shè)的中點(diǎn)為的垂直平分線的方程為.

②由①、②得的交點(diǎn)為.

…………9分故

,所以

由此知四點(diǎn)在以為圓心,為半徑的圓上.……………12分【點(diǎn)評(píng)】本題涉及到平面向量,有一定的綜合性和計(jì)算量,相對(duì)來講比較有利的方面,也就是這道題的特點(diǎn)是沒有任何的未知參數(shù),我們看這道題橢圓完全給出,直線過了橢圓焦點(diǎn),并且斜率也給出,平時(shí)做題斜率不給出,需要通過一定條件求出來,或者根本求不出來,這道題都給了,這個(gè)跟平時(shí)做的不太一樣,反而同學(xué)不知道怎么下手,完成有難度。這兩問出的非常巧妙,一個(gè)證明點(diǎn)在橢圓上的問題,還有一個(gè)四點(diǎn)共圓,這都是平時(shí)很少涉及到的解析幾何本質(zhì)的內(nèi)容。讓學(xué)生掌握解析幾何的本質(zhì),其實(shí)就是用代數(shù)方法研究幾何的問題,什么是四點(diǎn)共圓?首先在同一個(gè)圓上,首先找到圓心,四個(gè)點(diǎn)找圓心不好找,最簡單的兩個(gè)點(diǎn)怎么找?這是平時(shí)的知識(shí),怎么找距離相等的點(diǎn),一定在中垂線,兩個(gè)中垂線交點(diǎn)必然是圓心,找到圓心再距離四個(gè)點(diǎn)距離相等,這就是簡單的計(jì)算問題,方法確定以后計(jì)算量其實(shí)比往年少。建議:多練多體會(huì)?。?009)(22)(本小題滿分12分)已知橢圓C:的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B已知橢圓C:的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為(Ⅰ)求a,b的值;(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。(2010文)(20)(本小題滿分12分)設(shè),分別是橢圓E:+=1()的左、右焦點(diǎn),過的直線與E相交于A、B兩點(diǎn),且,,成等差數(shù)列。(Ⅰ)求(Ⅱ)若直線的斜率為1,求b的值。(2012文)(20)(本小題滿分12分)設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn)。(I)若∠BFD=90°,△ABD的面積為4eq\r(2),求p的值及圓F的方程;(II)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值。21.(2013課標(biāo)全國Ⅰ,文21)(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.(1)求C的方程;(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時(shí),求|AB|.(2013課標(biāo)全國2理)(20)(本小題滿分12分)平面直角坐標(biāo)系中,過橢圓右焦點(diǎn)的直線交于兩點(diǎn),為的中點(diǎn),且的斜率為。(Ⅰ)求的方程;(Ⅱ)為上的兩點(diǎn),若四邊形的對(duì)角線,求四邊形的最大值。(2014文、理)20.(本小題滿分12分)設(shè),分別是橢圓的左右焦點(diǎn),M是C上一點(diǎn)且與x軸垂直,直線與C的另一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論