商務智能錄屏2020ch3關(guān)聯(lián)分析_第1頁
商務智能錄屏2020ch3關(guān)聯(lián)分析_第2頁
商務智能錄屏2020ch3關(guān)聯(lián)分析_第3頁
商務智能錄屏2020ch3關(guān)聯(lián)分析_第4頁
商務智能錄屏2020ch3關(guān)聯(lián)分析_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第3章關(guān)聯(lián)分析Chapter3:Association ?He?He PrinciplesandApplicationsofBusiness PrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分§Basic§Efficientandscalablefrequentitemsetmining§Miningvariouskindsofassociation§§2PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 WhatIsAssociation§關(guān)聯(lián)規(guī)則的挖掘 中發(fā)現(xiàn)項或?qū)ο蟮念l繁的模式(frequentpatterns)、關(guān)聯(lián)(associations)的過buys(x, buys(x,“beers”)[0.5, (福布斯)》1998.4.6“啤酒尿布綜合癥ItemsItems1234yyes 11:11:關(guān)聯(lián)分析指導交叉銷

結(jié)點:商30:客一起30:PrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分BasicConcepts:FrequentTransactionaldatabase 數(shù)據(jù)庫 每 :eachtransactionisalistof 的商品 I={i1,i2,…, 項集Itemset):x={ij1ij2…TransactionItemsTransactionItems§I={A,B,C,D,E,§2項集5PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ItemsA,ItemsA,B,A,C,A,D,B,E,B,C,D,E,§ X={A}Y={A,若support(X)>=minsup,則X稱為頻繁項(frequentitemset),也可以說X是頻繁的 Letminsup= PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 BasicConcepts:Association§ItemsetX={x1,…,xk},Y={y1,…,§FindalltherulesXà Ywithminimumsupportandminimumconfidence§Threshold(閾值minimumsupport:Minimumconfidence:Sup(X Y)≥Conf(X Y)≥7PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Supportand§Association Transaction-ItemsA,B,A,C,Transaction-ItemsA,B,A,C,A,B,E,B,C,D,E,X={A}sup(A C)=sup(AC)=0.2X={A,D}=AD,Y=Csup C=sup8PrinciplesandApplicationsofBusiness Supportand§confidence(置信度

Chap3:關(guān)聯(lián)分conditionalprobabilitythatatransactionhavingXalso Y)=|XY|/|X|=sup(XY)/ItemsA,B,A,C,A,B,E,B,C,D,E,AAC(20%,C(20%,PrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分§Basic§Efficientandscalablefrequentitemsetminingmethods§Miningvariouskindsofassociation§§PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ScalableMethodsforMiningFrequent§ScalableminingApriori(Agrawal&Freq.patterngrowth(FPgrowth—Han,Pei&YinVerticaldataformatapproach(Charm—Zaki&Hsiao@SDM’02)PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 挖掘關(guān)聯(lián)規(guī)則(frequentitemsets)支持度>=minimumsupport的所有項集利用頻繁的k項集生成k+1項候選集itemsetTheAprioriAlgorithm—An2323313DatabaseA,C,B,C,A,B,C,B,{A,{A,2{B,2{B,3{C,2

1st{A,{A,1{A,2{A,1{B,2{B,3{C,2

22333{A,{A,{A,{B,{B,{C,2nd{B,C,{B,C,{B,C,{B,C,2PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 §任何頻繁集的子集必須是頻繁if{beer,diaper}isfrequent,sois{beer}and-包含{beer,diaper}的 Items1234§Apriori剪裁規(guī)則:若存在某些項集是不頻繁的,則Items1234PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 FrequentItemset

Givenditems,thereare2dpossiblecandidateitemsetsPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 AprioriPrinciple Foundtobe

PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 HowtoGenerate§SupposetheitemsinLkarelistedinan§Step1Lk§Step2裁剪PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 HowtoGenerate§SupposetheitemsinLkarelistedinan§beer<bread<butter<cheese<diaper<ItemsItems1234Items1234PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 HowtoGenerateCandidates?§Orderinalphabeticorder:abcabdacdabcabdacdacebcdabcdfromabcandacdefromacdand§PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 HowtoGenerateCandidates?Step …p.itemk-…p.itemk-…q.itemk-§pandqistwoitemsetsinLk,ifp.item1=q.item1,…,p.itemk-1=q.itemk-Thengeneratea(k+1)lengthp.item1,p.item2,…,p.itemk,

p.itemk<…p.itemk-PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 HowtoGenerateCandidates?Step§Deletethose(k+1)lengthitemsetswhichincludesinfrequentklengthitemsetE.g:L3={abc,abd,acd,ace,bcd},C4={abcdSince{cde}isnotfrequent,TheAprioriAlgorithm—An233233132333DatabaseA,C,B,C,A,B,C,B,{A,{A,2{B,2{B,3{C,2

1st{A,{A,1{A,2{A,1{B,2{B,3{C,2

{A,{A,{A,{A,{B,{B,{C,2nd{B,C,{B,C,{B,C,{B,C,2PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 §已知 PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Apriori:generatingassociation Y)=P(Y|X)=support(X§Foreachfrequentitemsetl,generateeverynon-subsets;ifssatisfiesconfidence((l- s)Outputrules:(l- e.g:l=ABCD,s=D,(l-s)=

sup(l-s)

? D)=support(ABCD)/PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Apriori:generatingassociation{A2{B2{B{A2{B2{B3{C2itemsesup.{A}2{B}3{C}3{E}3{BC2§For{BCE}:Confidence(BEC)=2/3<Confidence(BCE)=2/2>80%Confidence(CEB)=2/2>80%Confidence(BCE)=2/3<80%Confidence(CBE)=2/3<80%Confidence(EBC)=2/3<80%PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Apriori:generatingassociation{A2{B2{B{A2{B2{B3{C2itemsesup.{A}2{B}3{C}3{E}3{BC2§For{BCE}:Confidence(BE C)<80%,Confidence(BC E)>80%Confidence(CE B)>80%confidence(C BE):<80%PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Generating§ForBCE, C)< C)=support(BCE)<§Howabout ECand BC EC)= BC)=PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Generating§Supposel=ABCDisafrequent§IfbothBCD AandACD BholdThenCD ABispossibletohold.§If AB, AC,and BCThen ABCispossibletoFP-GrowthFreq.patterngrowth(FPgrowth—Han,Pei&Yin@SIGMOD’00)IssupportandconfidencePrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分Issupportandconfidence ybasketball eatcereal[40%,66.7%] -Theoverallpercentageofstudentseatingcerealis75%whichishigherthan66.7%. ybasketball noteatcereal[20%,33.3%]ismoreaccurate,althoughwithlowersupportandPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 InterestingnessMeasure:§Supportandconfidencearenotgoodtorepresentcorrelations:A→B(support,confidence,§Measureofdependent/correlated-lift,c2,all_conf,PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 InterestingnessMeasure:Correlations§

lift=P(A¨P(A)P(B)

>1:positively(增益,提升度)conf(A B)=1: sup(B)

<1:negativelyNotNotLift(basketball,cereal)=2000*5000/(3750*3000)=Lift(basketball,PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 {A2{B{A2{B2{B3{C2itemsesup.{A}2{B}3{C}3{E}3A,C,B,C,A,B,C,B,§Lift:sup§Confidence(BE SupLift(BE C)=(2/3)/(3/4)=

= sup(AB) sup(A)sup(B)§Confidence(BC SupLift(BC

conf PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ClosedPatternsandMax-§Alongpatterncontainsacombinatorialnumberofsub-patterns,e.g.,{a1,…,a100}10(1001)+(1002)+…+(100)=2100–1=10§Solution:Mineclosedpatternsandmax-patternsinsteadReducingthe#ofpatternsandrulesPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ClosedPatternsandMax-§AnitemsetXisamax-patternifXisfrequentandthereexistsnofrequentsuper-patternY (proposedbyBayardo@A,A,C,B,C,A,B,C,B,itemsesup.{A}2{B}3{C}3{E}3{A,2{B,2{B,3{C,2{BC2PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ClosedPatternsandMax-§AnitemsetXisclosedifXisfrequentandtherenosuper-patternY X,withthesamesupportasX(proposedbyPasquier,etal.@ICDT’99)§ClosedpatternisalosslesscompressionofA,A,C,B,C,A,B,C,B,itemsesup.{A}2{B}3{C}3{E}3{A,2{B,2{B,3{C,2{BC2PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ClosedPatternsandMax-§DB={<a1,…,a100>,<a1,…,-Min_sup=§Whatisthesetofclosed-<a1,…,a100>:-<a1,…,a50>:§Whatisthesetofmax--<a1,…,a100>:§Whatisthesetofall-PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 FurtherImprovementsofMining§Carpenter(Pan,etal.@MinedatasetswithsmallrowsbutnumerousConstructabottom-uprow-enumerationtreeforefficient§TD-close(Liu,Han,etal.@SDM06,oneof4bestMinedatasetswithsmallrowsbutnumerousConstructaTop-downrow-enumerationtreeforefficientHongyanLiu,XiaoyuWang,JunHe,JiaweiHan,DongXin,ZhengShao:Top-downminingoffrequentclosedpatternsfromveryhighdimensionaldata.InformationSciences.179(7):899-924 PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 1A,C,1A,C,2B,C,3A,B,C,4B,567…1Pj1,Pj2,…,2Pk1,Pk2,…,3Pl1,Pl2,…,…Pm1,Pm2,…,PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 §Foreachitem,storealistoftransactionidsHorizontalDataLayoutTIDItems1A,B,ETIDItems1A,B,E2B,C,D3C,E4A,C,D5A,B,C,D6A,E7A,B8A,B,C9A,C,D10BPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Rowenumeration TransposedABCD123451,2,4,1,2,3,1,2,4,2,3, PrinciplesandApplicationsofBusiness Bottom-up

Chap3:關(guān)聯(lián)分§Frequentclosed§Largeclosed§

12345

b12c2c2

1 2

Fig.2.Bottom-uprowenumerationPrinciplesandApplicationsofBusiness Basic

Chap3:關(guān)聯(lián)分 Efficientandscalablefrequentitemsetmining Miningvariouskindsofassociation PrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分§Singledimensionalvs.multipledimensional [0.2%,Age=30..39,e=medium buys_PC=yes[1%, Singlelevelvs.multiple- 什么品牌的啤酒和尿片(diapers)有關(guān)聯(lián) dissociationy noteatcereal[20%,PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 ItemsItems1234…ebuys_PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Multiple-LevelAssociation 概念層次§低層的項通常具有較低光三§將項抽象到一定高的層次產(chǎn)生的規(guī)則更有光三§一個超市的庫存中至少milk→bread[20%,2%milk→wheatbread[6%,PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 Multiple-LevelAssociationA,C,B,A,C,B,C,A,B,C,B,-SinglelevelrulesBC→-Multiplelevel FFC→ FDCBE§Two DCBEPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 §當Lift<1Lift(basketball,cereal)=Lift(basketball,notCereal)=NotNotPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 無關(guān)(負關(guān)聯(lián))規(guī)則(dissociation§發(fā)現(xiàn)帶有“非Ii” B)→1A,2B,3A,4A,C,1A, 2A,B,C 3 B,C 4A,C, PrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分§Basic§Efficientandscalablefrequentitemsetminingmethods§Miningvariouskindsofassociation§§PrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 §采購籃分析(Basket ysis),交叉銷家電HomeElectronics*(商店需要儲備proximity:atoppositeendsofthestore對哪些商品降價銷售computerprinter,reducethepriceofprinterPrinciplesandApplicationsofBusiness

Chap3:關(guān)聯(lián)分§經(jīng)過三個指標的篩選,購物籃分析的理論計算部分§另外,需要的是,購物籃分析在跟顧客分群技PrinciplesPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分DoctorDoctorFraudACasePrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 HealthInsurance-TestMonitoring§DetermineifGPswereorderinginappropriatepathologytestsandifyes,whichones.§ExaminepatientrecordsforpathologytestsacrossallGPsfortestorderingpatterns(sequencesandassociations).DetermineifsomecombinationoftestswasinappropriatePrinciplesandApplicationsofBusiness Health§

Chap3:關(guān)聯(lián)分Used18millionpatientvisitsrecordstopathologists.(inonevisittherecouldbeupto20tests)UsedIBM'sassociationdiscoveryalgorithmtoseewhichtestswereperformedwithothertestsFoundthatwhenTestAwasperformedtheconfidencelevelthatBwillbeperformedwasstrikinglyhighforsomepathologiststhanothersButexpertstoldthatanother,andcheaper,TestCwasindicatedwithTestA.Thisisanindicationofmis-codingoftestsbythelab,possiblyfraudulent,toearnafewmoredollarsPrinciplesandApplicationsofBusiness Health§Thismis-codingcouldnothavebeenItisexpectedtosavethecustomerinperyear.

Chap3:關(guān)聯(lián)分excessof$1MPrinciplesandApplicationsofBusiness Chap3:關(guān)聯(lián)分析 mender§Supposewehaveadatasetrecordingwhenandwhichbookswerepurchasedbywhichcustomer(representedbyCID).Ifwewanttomendbookstousers,howcanweuseassociationrulestodothat?Describehowtobuildthetransactiondatasetinordertofindsuchrules.2010-9-2010-9-2010-9-B2,…2010-9-PrinciplesandApplicationsofBusiness A,B,C,C,D,A,A,B,E,C,D,

Chap3:關(guān)聯(lián)分§Minsup=40%,§CD→E(40%,§C→D(60%,§A→B(60%,A,B,E:up,down,up,BothAandBupimpliesEupinthenextdaywith100%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論