中考數(shù)學二輪復習培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第1頁
中考數(shù)學二輪復習培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第2頁
中考數(shù)學二輪復習培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第3頁
中考數(shù)學二輪復習培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第4頁
中考數(shù)學二輪復習培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第5頁
已閱讀5頁,還剩64頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

47第9章函數(shù)的綜合問題之多函數(shù)綜合題一、選擇題1.下列四個函數(shù)中,在自變量SKIPIF1<0取值范圍內(nèi)SKIPIF1<0隨SKIPIF1<0的增大而減小的是()A.SKIPIF1<0(SKIPIF1<0<0) B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)自變量SKIPIF1<0取值范圍內(nèi)y隨x的增大而減小,結(jié)合函數(shù)圖像性質(zhì),判斷二次函數(shù)、反比例函數(shù)和一次函數(shù),選出正確結(jié)論.【解答】A.SKIPIF1<0(SKIPIF1<0<0),如下圖:當SKIPIF1<0<0時,y隨x的增大而減小,A選項符合題意.B.SKIPIF1<0,如下圖:x取值全體實數(shù),當SKIPIF1<0<0時,y隨x的增大而增大,B選項不符合題意.C.SKIPIF1<0,如下圖:x取值全體實數(shù),y隨x的增大而增大,C選項不符合題意.D.SKIPIF1<0,如下圖:x取值全體實數(shù),y隨x的增大而增大,D選項不符合題意.故選:A【點評】本題考查二次函數(shù)、反比例函數(shù)和一次函數(shù)增減性,掌握二次函數(shù)、反比例函數(shù)和一次函數(shù)圖像增減性是解題關鍵.2.在同一直角坐標系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2+2x+b的圖像可能是()A. B. C. D.【答案】C【分析】本題可先由一次函數(shù)y=ax+b圖象得到字母系數(shù)的正負,再與二次函數(shù)y=ax2+2x+b的圖象相比較看是否一致.【解答】A、由拋物線可知,a>0,得b>0,由直線可知,a<0,b>0,故本選項錯誤;B、由拋物線可知,a<0,b>0,由直線可知,a<0,b<0,故本選項錯誤;C、由拋物線可知,a>0,b>0,由直線可知,a>0,b>0,且交y軸同一點,故本選項正確;D、由拋物線可知,a<0,b>0,由直線可知,a>0,b<0,故本選項錯誤;故選:C.【點評】本題考查了二次函數(shù)圖象,一次函數(shù)的圖象,應該熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質(zhì):開口方向、對稱軸、頂點坐標等.3.如圖,正比例函數(shù)y1=mx,一次函數(shù)y2=ax+b和反比例函數(shù)y3=SKIPIF1<0的圖象在同一直角坐標系中,若y3>y1>y2,則自變量x的取值范圍是()A.x<﹣1 B.﹣0.5<x<0或x>1 C.0<x<1 D.x<﹣1或0<x<1【答案】D【分析】根據(jù)圖象,找出雙曲線y3落在直線y1上方,且直線y1落在直線y2上方的部分對應的自變量x的取值范圍即可.【解答】解:由圖象可知,當x<﹣1或0<x<1時,雙曲線y3落在直線y1上方,且直線y1落在直線y2上方,即y3>y1>y2,∴若y3>y1>y2,則自變量x的取值范圍是x<﹣1或0<x<1.故選:D.【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合是解題的關鍵.4.如圖,已知在平面直角坐標系SKIPIF1<0中,直線SKIPIF1<0分別交SKIPIF1<0軸,SKIPIF1<0軸于點SKIPIF1<0和點SKIPIF1<0,分別交反比例函數(shù)SKIPIF1<0的圖象于點SKIPIF1<0和點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,連結(jié)SKIPIF1<0,若SKIPIF1<0的面積與SKIPIF1<0的面積相等,則SKIPIF1<0的值是()A.1 B.SKIPIF1<0 C.2 D.4【答案】C【分析】由反比例k的幾何意義可得S△OCE=SKIPIF1<0k,設D(x,SKIPIF1<0),所以S△BOD=-SKIPIF1<0x,再由已知可得SKIPIF1<0k=-SKIPIF1<0x,求得D(-k,-2),再將點D代入y=SKIPIF1<0x-1即可求k的值.【解答】解:由題意可求B(0,-1),

∵直線y=SKIPIF1<0x-1與y1=SKIPIF1<0交于點C,

∴S△OCE=SKIPIF1<0k,設D(x,SKIPIF1<0),∴S△BOD=SKIPIF1<0×1×(-x)=-SKIPIF1<0x,∵△COE的面積與△DOB的面積相等,∴SKIPIF1<0k=-SKIPIF1<0x,∴k=-x,

∴D(-k,-2),

∵D點在直線y=SKIPIF1<0x-1上,∴-2=-SKIPIF1<0k-1,∴k=2,

故選:C.【點評】本題考查反比例函數(shù)與一次函數(shù)的圖象與性質(zhì);熟練掌握反比函數(shù)的k的幾何意義,函數(shù)上點的特征是解題的關鍵.5.如圖,點M為反比例函數(shù)y=SKIPIF1<0上的一點,過點M作x軸,y軸的垂線,分別交直線y=-x+b于C,D兩點,若直線y=-x+b分別與x軸,y軸相交于點A,B,則AD·BC的值是()A.3 B.2SKIPIF1<0 C.2 D.SKIPIF1<0【答案】C【分析】設點M的坐標為(SKIPIF1<0),將SKIPIF1<0代入y=-x+b中求出C點坐標,同理求出D點坐標,再根據(jù)兩點之間距離公式即可求解.【解答】解:設點M的坐標為(SKIPIF1<0),將SKIPIF1<0代入y=-x+b中,得到C點坐標為(SKIPIF1<0),將SKIPIF1<0代入y=-x+b中,得到D點坐標為(SKIPIF1<0),∵直線y=-x+b分別與x軸,y軸相交于點A,B,∴A點坐標(0,b),B點坐標為(b,0),∴AD×BC=SKIPIF1<0,故選:C.【點評】本題考查的是一次函數(shù)及反比例函數(shù)的性質(zhì),先設出M點坐標,用M點的坐標表示出C、D兩點的坐標是解答此題的關鍵.6.如圖,A,B兩點在反比例函數(shù)SKIPIF1<0的圖象上,C,D兩點在反比例函數(shù)SKIPIF1<0的圖象上,AC⊥y軸于點E,BD⊥y軸于點F,AC=6,BD=3,EF=8,則k1﹣k2的值是()A.10 B.18 C.12 D.16【答案】D【分析】由反比例函數(shù)的性質(zhì)可知SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0和SKIPIF1<0可求得SKIPIF1<0的值.【解答】解:連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,如圖:由反比例函數(shù)的性質(zhì)可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0①,SKIPIF1<0,SKIPIF1<0SKIPIF1<0②,由①②兩式得:SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,故選:SKIPIF1<0.【點評】本題考查反比例函數(shù)圖象上的點的坐標特征,解題的關鍵是利用參數(shù),構(gòu)建方程組解決問題,屬于中考??碱}型.7.已知在同一直角坐標系中二次函數(shù)SKIPIF1<0和反比例函數(shù)SKIPIF1<0的圖象如圖所示,則一次函數(shù)SKIPIF1<0的圖象可能是()A. B. C. D.【答案】B【分析】根據(jù)反比例函數(shù)圖象和二次函數(shù)圖象位置可得出:a﹤0,b﹥0,c﹥0,由此可得出SKIPIF1<0﹤0,一次函數(shù)圖象與y軸的交點在y軸的負半軸,對照四個選項即可解答.【解答】由二次函數(shù)圖象可知:a﹤0,對稱軸SKIPIF1<0﹥0,∴a﹤0,b﹥0,由反比例函數(shù)圖象知:c﹥0,∴SKIPIF1<0﹤0,一次函數(shù)圖象與y軸的交點在y軸的負半軸,對照四個選項,只有B選項符合一次函數(shù)SKIPIF1<0的圖象特征.故選:B·【點評】本題考查反比例函數(shù)的圖象、二次函數(shù)的圖象、一次函數(shù)的圖象,熟練掌握函數(shù)圖象與系數(shù)之間的關系是解答的關鍵·8.若函數(shù)SKIPIF1<0與SKIPIF1<0的圖像如圖所示,則函數(shù)SKIPIF1<0的大致圖像是()A. B.C. D.【答案】B【分析】先根據(jù)二次函數(shù)及反比例函數(shù)的圖像確定k、c的正負,然后根據(jù)一次函數(shù)的性質(zhì)即可解答.【解答】解:根據(jù)反比例函數(shù)的圖象位于二、四象限知k<0;根據(jù)二次函數(shù)的圖像可知a>0,b<0,c>0;根據(jù)一次函數(shù)的性質(zhì)可得:函數(shù)y=kx+c的大致圖象經(jīng)過一、二、四象限.故答案為B.【點評】本題考查了函數(shù)的圖象的知識,解題的關鍵在于根據(jù)二次函數(shù)及反比例函數(shù)的圖像確定k、c的正負.9.正方形ABCD的邊長為4,P為BC上的動點,連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ,則AQ的最小值是()A.5 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】A【分析】設BP=x,CQ=y,根據(jù)△ABP∽△PCQ可得y關于x的二次函數(shù),利用二次函數(shù)的性質(zhì),求得y的最大值情況,則QD最小,則AQ最?。窘獯稹俊咚倪呅蜛BCD是正方形,∴∠B=∠C=90°,∵PQ⊥AP,∴∠APB+∠QPC=90°,∠APB+∠BAP=90°,∴∠BAP=∠QPC,∴△ABP∽△PCQ,∴SKIPIF1<0,設BP=x,CQ=y即SKIPIF1<0,∴y=﹣SKIPIF1<0+x=﹣SKIPIF1<0+1(0<x<4),∵﹣SKIPIF1<0<0,∴y有最大值,∴當x=2時,y有最大值1cm.此時QD=3在Rt△AQP中,SKIPIF1<0故AQ的最小值是5故選:A.【點評】本題考查最值問題,是利用二次函數(shù)求最值的方式解決的,常見求最值方法有3種:利用對稱求最值;利用三角形三邊關系求最值;利用二次函數(shù)性質(zhì)求最值.10.如圖所示,已知點C(2,0),直線SKIPIF1<0與兩坐標軸分別交于A、B兩點,D、E分別是AB、OA上的動點,當SKIPIF1<0的周長取最小值時,點D的坐標為()A.(2,1) B.(3,2) C.(SKIPIF1<0,2) D.(SKIPIF1<0,SKIPIF1<0)【答案】D【分析】如圖,點C關于OA的對稱點SKIPIF1<0,點C關于直線AB的對稱點SKIPIF1<0,求出點SKIPIF1<0的坐標,連接SKIPIF1<0與AO交于點E,與AB交于點D,此時△DEC周長最小,再求出直線DE的解析式,聯(lián)立兩條直線的解析式即可求出交點D的坐標.【解答】如圖,點C關于OA的對稱點SKIPIF1<0,點C關于直線AB的對稱點SKIPIF1<0∵直線AB的解析式為SKIPIF1<0∴直線SKIPIF1<0的解析式為SKIPIF1<0由SKIPIF1<0解得SKIPIF1<0∴直線AB與直線SKIPIF1<0的交點坐標為SKIPIF1<0∵K是線段SKIPIF1<0的中點∴SKIPIF1<0連接SKIPIF1<0與AO交于點E,與AB交于點D,此時△DEC周長最小設直線DE的解析式為SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0∴直線DE的解析式為SKIPIF1<0聯(lián)立直線DE和直線直線SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0∴點D的坐標為SKIPIF1<0故答案為:D.【點評】本題考查了一次函數(shù)的幾何問題,掌握一次函數(shù)的性質(zhì)是解題的關鍵.二、填空題11.直線y=3kx+2(k﹣1)與拋物線y=x2+2kx﹣2在﹣1≤x≤3范圍內(nèi)有唯一公共點,則k的取值為________.【答案】1<k≤SKIPIF1<0或k=0【分析】聯(lián)立方程組SKIPIF1<0得到x2=kx+2k,看成是SKIPIF1<0聯(lián)立而成的兩個函數(shù),畫出函數(shù)圖象,運用數(shù)形結(jié)合法求解即可.【解答】解:聯(lián)立SKIPIF1<0,得:3kx+2(k﹣1)=x2+2kx﹣2,即,x2=kx+2k,可以看成是SKIPIF1<0聯(lián)立而成的兩個函數(shù),∵y=kx+2k=k(x+2),∴當x+2=0時,此函數(shù)必過定點(﹣2,0),即過(﹣2,0),(﹣1,1)的直線l1與過(﹣2,0),(3,9)的直線l2間的范圍就是滿足條件的直線運動的位置,如圖,將(﹣1,1)代入y=kx+2k得1=﹣k+2k,解得,k=1,將(3,9)代入y=kx+2k得,9=3k+2k,解得,k=SKIPIF1<0,當k=1時,直線直線與拋物線在﹣1≤x≤3內(nèi)有兩個交點,∴k≠1,∴1<k≤SKIPIF1<0,當k=0時,直線為y=﹣2,拋物線為y=x2﹣2,此時,在﹣1≤x≤3范圍內(nèi)有唯一公共點,故答案為:1<k≤SKIPIF1<0或k=0.【點評】本題主要考查二次函數(shù)的圖像與性質(zhì),熟練掌握二次函數(shù)的圖像與性質(zhì)是解題的關鍵.12.如圖,曲線是由函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象繞坐標原點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0得到的,過點SKIPIF1<0,SKIPIF1<0的直線與曲線SKIPIF1<0相交于點SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的面積為_______.【答案】SKIPIF1<0【分析】由題意得SKIPIF1<0,SKIPIF1<0,建立如圖所示的平面直角坐標系,利用方程組求出M、N的坐標,根據(jù)S△OMN=S△OBM-S△OBN計算即可.【解答】解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴OA⊥OB.建立如圖新的坐標系,OB為x′軸,OA為y′軸.∵SKIPIF1<0在新的坐標系中,A(0,8),B(4,0),由待定系數(shù)法可得直線AB解析式為y′=-2x′+8,函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象繞坐標原點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0.故答案為:SKIPIF1<0.【點評】本題考查坐標與圖形的性質(zhì)以及一次函數(shù)和反比例函數(shù)的性質(zhì)等知識,解題的關鍵是學會建立新的坐標系解決問題.13.如圖,直線y=mx+n與雙曲線y=SKIPIF1<0(k>0,x>0)相交于點A(2,4),與y軸相交于點B(0,2),點C在該反比例函數(shù)的圖象上運動,當△ABC的面積超過5時,點C的橫坐標t的取值范圍是_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】過C作CD∥y軸,交直線AB于點D.把A(2,4)代入y=SKIPIF1<0,求出k=8,得到反比例函數(shù)的解析式,再把A(2,4),B(0,2)代入y=mx+n,求出直線AB的解析式為y=x+2.設C(t,SKIPIF1<0),則D(t,t+2).由三角形的面積公式可得S△ABC=SKIPIF1<0CD×2=CD=|t+2﹣SKIPIF1<0|,根據(jù)△ABC的面積超過5列出不等式|t+2﹣SKIPIF1<0|>5,解不等式即可.【解答】解:如圖,過C作CD∥y軸,交直線AB于點D.∵雙曲線y=SKIPIF1<0(k>0,x>0)過點A(2,4),∴k=2×4=8,∴y=SKIPIF1<0.∵直線y=mx+n過點A(2,4),B(0,2),∴SKIPIF1<0,解得SKIPIF1<0,∴直線AB的解析式為y=x+2.設C(t,SKIPIF1<0),則D(t,t+2),CD=|t+2﹣SKIPIF1<0|.∵S△ABC=SKIPIF1<0CD×2=CD=|t+2﹣SKIPIF1<0|,∴當△ABC的面積超過5時,|t+2﹣SKIPIF1<0|>5,∴t+2﹣SKIPIF1<0>5或t+2﹣SKIPIF1<0<﹣5.①如果t+2﹣SKIPIF1<0>5,那么SKIPIF1<0>0,∵t>0,∴t2﹣3t﹣8>0,∴t>SKIPIF1<0或t<SKIPIF1<0(舍去);②如果t+2﹣SKIPIF1<0<﹣5,那么SKIPIF1<0<0,∵t>0,∴t2+7t﹣8<0,∴﹣8<t<1,∴0<t<1.綜上所述,當△ABC的面積超過5時,點C的橫坐標t的取值范圍是t>SKIPIF1<0或SKIPIF1<0.故答案為:t>SKIPIF1<0或0<t<1.【點評】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合應用,用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,三角形面積,不等式的性質(zhì),一元二次方程解法等知識點,利用三角形面積等量代換列出不等式是解題的關鍵.14.如圖,已知直線y=﹣2x+4與x軸交于點A,與y軸交于點B,與雙曲線y=SKIPIF1<0(x>0)交于C、D兩點,且∠AOC=∠ADO,則k的值為_____.【答案】SKIPIF1<0【分析】先利用面積判斷出BD=AC,再判斷出△AOC∽△ADO,進而建立方程求出AC=BD,再判斷出△ACE∽△ABO,進而求出CE,OE,即可得出結(jié)論.【解答】解:由已知得OA=2,OB=4,根據(jù)勾股定理得出,AB=2SKIPIF1<0,如圖,過點C作CE⊥x軸于E,作CG⊥y軸G,過點D作DH⊥x軸于H,作DF⊥y軸于F,連接GH,GD,CH,∵點C,D是反比例圖象上的點,∴S矩形FDHO=S矩形GCEO,∴SKIPIF1<0S矩形FDHO=SKIPIF1<0S矩形GDEO.∴S△DGH=S△GHC.∴點C,D到GH的距離相等.∴CD∥GH.∴四邊形BDHG和四邊形GHAC都是平行四邊形.∴BD=GH,GH=CA.即BD=AC;設AC=BD=m,∵∠AOC=∠ADO,CAO=∠DAO,∴△AOC∽△ADO,∴SKIPIF1<0,∴AO2=AC?AD,∴22=m(2SKIPIF1<0﹣m),∴m=SKIPIF1<0±1(舍去SKIPIF1<0+1),過點C作CE⊥x軸于點E,∴△ACE∽△ABO,∴SKIPIF1<0,∴SKIPIF1<0,∴AE=SKIPIF1<0,CE=SKIPIF1<0,∴OE=OA﹣AE=2﹣SKIPIF1<0=SKIPIF1<0?OE=SKIPIF1<0=SKIPIF1<0,故答案為:SKIPIF1<0.【點評】本題考查了一次函數(shù)和反比例函數(shù),以及相似三角形的判定和性質(zhì),解題的關鍵是理解函數(shù)的圖像和性質(zhì),結(jié)合相似三角形解決問題.15.在平面直角坐標系SKIPIF1<0中,已知直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(點SKIPIF1<0在第一象限),直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點.當這兩條直線互相垂直,且四邊形SKIPIF1<0的周長為SKIPIF1<0時,點SKIPIF1<0的坐標為_________.【答案】SKIPIF1<0或SKIPIF1<0【分析】首先根據(jù)題意求出點A坐標為(SKIPIF1<0,SKIPIF1<0),從而得出SKIPIF1<0,然后分兩種情況:①當點B在第二象限時求出點B坐標為(SKIPIF1<0,SKIPIF1<0),從而得出SKIPIF1<0,由此可知SKIPIF1<0,再利用平面直角坐標系任意兩點之間的距離公式可知:SKIPIF1<0,所以SKIPIF1<0,據(jù)此求出SKIPIF1<0,由此進一步通過證明四邊形ABCD是菱形加以分析求解即可得出答案;②當點B在第四象限時,方法與前者一樣,具體加以分析即可.【解答】∵直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(點SKIPIF1<0在第一象限),∴聯(lián)立二者解析式可得:SKIPIF1<0,由此得出點A坐標為(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0,①當點B在第二象限時,如圖所示:∵直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,∴聯(lián)立二者解析式可得:SKIPIF1<0,由此得出點B坐標為(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0,∵AC⊥BD,∴SKIPIF1<0,根據(jù)平面直角坐標系任意兩點之間的距離公式可知:SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,根據(jù)反比例函數(shù)圖象的對稱性可知:OC=OA,OB=OD,∵AC⊥BD,∴四邊形ABCD是菱形,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或2,∴A點坐標為(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0),②當點B在第四象限時,如圖所示:∵直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,∴聯(lián)立二者解析式可得:SKIPIF1<0,由此得出點B坐標為(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0,∵AC⊥BD,∴SKIPIF1<0,根據(jù)平面直角坐標系任意兩點之間的距離公式可知:SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,根據(jù)反比例函數(shù)圖象的對稱性可知:OC=OA,OB=OD,∵AC⊥BD,∴四邊形ABCD是菱形,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或2,∴A點坐標為(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0),綜上所述,點A坐標為:(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0),故答案為:(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0).【點評】本題主要考查了反比例函數(shù)與一次函數(shù)圖象及性質(zhì)和菱形性質(zhì)的綜合運用,熟練掌握相關方法是解題關鍵.三、解答題16.如圖,直角坐標系SKIPIF1<0中,一次函數(shù)SKIPIF1<0的圖像SKIPIF1<0分別與SKIPIF1<0,SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點,正比例函數(shù)的圖像SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0SKIPIF1<0.(1)求SKIPIF1<0的值及SKIPIF1<0的解析式;(2)求△AOC的面積;(3)若點M是直線SKIPIF1<0一動點,連接OM,當△AOM的面積是△BOC面積的SKIPIF1<0時,請直接寫出出符合條件的點M的坐標;(4)一次函數(shù)SKIPIF1<0的圖像為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,直接寫出SKIPIF1<0的值.【答案】(1)SKIPIF1<0;SKIPIF1<0;(2)20;(3)M的坐標為SKIPIF1<0,SKIPIF1<0;(4)k的值是SKIPIF1<0或2或SKIPIF1<0.【分析】(1)把點C代入SKIPIF1<0可得出m的值,設SKIPIF1<0為SKIPIF1<0,即可得到結(jié)果;(2)求出A的值,根據(jù)三角形面積計算即可;(3)求出AM,BC,根據(jù)SKIPIF1<0列出等式計算即可;(4)由于一次函數(shù)SKIPIF1<0的圖像為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,根據(jù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的位置關系分別判斷即可;【解答】(1)∵點SKIPIF1<0SKIPIF1<0在SKIPIF1<0上,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設SKIPIF1<0為SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的解析式SKIPIF1<0.(2)由于SKIPIF1<0,∴SKIPIF1<0與SKIPIF1<0垂直,由(1)可知SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)由題意可得:SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,故M的坐標為SKIPIF1<0,SKIPIF1<0.(4)∵一次函數(shù)SKIPIF1<0的圖像為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,∴當SKIPIF1<0經(jīng)過點SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0、SKIPIF1<0平行時,SKIPIF1<0;當SKIPIF1<0、SKIPIF1<0平行時,SKIPIF1<0;故k的值是SKIPIF1<0或2或SKIPIF1<0.【點評】本題主要考查了一次函數(shù)中的直線位置關系,準確分析計算是解題的關鍵.17.已知,在平面直角坐標系中,點SKIPIF1<0,SKIPIF1<0是平行四邊形OABC的兩個頂點,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點B.(1)求出反比例函數(shù)的表達式;(2)將SKIPIF1<0沿著x軸翻折,點C落在點D處,判斷點D是否在反比例函數(shù)SKIPIF1<0的圖象上,并說明理由;(3)在x軸上是否存在一點P,使SKIPIF1<0為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.【答案】(1)SKIPIF1<0;(2)在,理由見解析;(3)存在,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【分析】(1)證明SKIPIF1<0,則SKIPIF1<0,故點SKIPIF1<0,故SKIPIF1<0,即可求解;(2)翻折后點SKIPIF1<0的坐標為:SKIPIF1<0,則SKIPIF1<0,即可求解;(3)分SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三種情況,分別求解即可.【解答】解:(1)分別過點SKIPIF1<0、SKIPIF1<0作SKIPIF1<0軸的垂線,垂足分別為:SKIPIF1<0、SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故點SKIPIF1<0,故SKIPIF1<0,則反比例函數(shù)表達式為:SKIPIF1<0;(2)翻折后點SKIPIF1<0的坐標為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在反比例函數(shù)SKIPIF1<0的圖象上;(3)如圖示:當SKIPIF1<0時,點SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,點SKIPIF1<0;當SKIPIF1<0時,設點SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0;綜上,點SKIPIF1<0的坐標為:SKIPIF1<0,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點評】本題考查了反比例函數(shù)的性質(zhì),平行四邊形性質(zhì)等知識點,熟悉相關性質(zhì)是解題的關鍵.18.在“新冠”疫情期間,全國人民“眾志成城,同心抗疫”,某商家決定將一周獲得的利潤全部捐贈給社區(qū)用于抗疫.已知商家購進一批產(chǎn)品,成本為10元/件,擬采取線上和線下兩種方式進行銷售.調(diào)查發(fā)現(xiàn),線下的周銷售量y(單位:件)與線下售價x(單位:元/件,SKIPIF1<0)滿足一次函數(shù)的關系,部分數(shù)據(jù)如下表:x(元/件)1213141516y(件)1201101009080(1)求y與x的函數(shù)關系式;(2)若線上售價始終比線下每件便宜2元,且線上的周銷售量固定為40件.試問:當x為多少時,線上和線下周利潤總和達到最大?并求出此時的最大利潤.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;730元.【分析】(1)根據(jù)線下周銷售量與線下售價存在一次函數(shù)關系,將表格中任意兩個數(shù)值代入一次函數(shù),計算求解即可.(2)先算線上、線下銷售額總數(shù),再減去線上、線下總成本,所得結(jié)果就是線上、線下周利潤總和,其結(jié)果可表示成以x為自變量的二次函數(shù),運用求二次函數(shù)最大值的方法運算求解.【解答】(1)解:SKIPIF1<0線下的周銷售量y與線下售價x(SKIPIF1<0)滿足一次函數(shù)的關系,SKIPIF1<0,從題中表格任取兩組數(shù)值,聯(lián)立二元一次方程組,SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0.(2)解:設線下每件商品售價x元,線上每件商品售價SKIPIF1<0元,SKIPIF1<0銷售額=單價×銷售量SKIPIF1<0線上、線下總銷售額=SKIPIF1<0,SKIPIF1<0成本=每件商品進價×件數(shù)SKIPIF1<0線上、線下總成本=SKIPIF1<0,SKIPIF1<0總利潤=總銷售額-總成本可列式子:SKIPIF1<0整理得:SKIPIF1<0,設總利潤y與商品線下每件售價x存在二次函數(shù)關系:SKIPIF1<0,SKIPIF1<0當SKIPIF1<0,函數(shù)有最大值,最大值為SKIPIF1<0.SKIPIF1<0當SKIPIF1<0時,線上和線下周利潤總和達到最大,最大利潤是730元.【點評】本題考查一次函數(shù)、二次函數(shù)在銷售中求最大值,找出題中的數(shù)量關系,掌握二次函數(shù)求最值的方法是解題關鍵.19.某醫(yī)藥研究所研發(fā)了一種新藥,試驗藥效時發(fā)現(xiàn):1.5小時內(nèi),血液中含藥量y(微克)與時間x(小時)的關系可近似地用二次函數(shù)y=ax2+bx表示;1.5小時后(包括1.5小時),y與x可近似地用反比例函數(shù)y=SKIPIF1<0(k>0)表示,部分實驗數(shù)據(jù)如表:時間x(小時)0.211.8…含藥量y(微克)7.22012.5…(1)求a、b及k的值;(2)服藥后幾小時血液中的含藥量達到最大值?最大值為多少?(3)如果每毫升血液中含藥量不少于10微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時間.(SKIPIF1<0≈1.41,精確到0.1小時)【答案】(1)a=﹣20,b=40,k=22.5;(2)服藥后1小時血液中的含藥量達到最大值,最大值為20微克;(3)成人按規(guī)定劑量服用該藥一次后能維持2.0小時的有效時間.【分析】(1)根據(jù)表格信息代入數(shù)值列方程組求解即可;(2)由(1)得到y(tǒng)=﹣20x2+40x,化為頂點式即可得到結(jié)果;(3)令y=10求出x的值就是所求的結(jié)果;【解答】(1)設1.5小時內(nèi),血液中含藥量y(微克)與時間x(小時)的關系為y=ax2+bx,根據(jù)表格得:SKIPIF1<0,解得:a=﹣20,b=40,1.5小時后(包括1.5小時),y與x可近似地用反比例函數(shù)y=SKIPIF1<0(k>0),根據(jù)表格得:k=1.8×12.5=22.5,∴a=﹣20,b=40,k=22.5;(2)由(1)知y=﹣20x2+40x,∴y=﹣20(x﹣1)2+20,∴服藥后1小時血液中的含藥量達到最大值,最大值為20微克;(3)當y=10時,10=﹣20x2+40x,或10=SKIPIF1<0,解得:x=1﹣SKIPIF1<0或x=1+SKIPIF1<0(x>1.5,不合題意舍去),x=2.25,∴成人按規(guī)定劑量服用該藥一次后能維持2.25﹣(1﹣SKIPIF1<0)≈2.0小時的有效時間.【點評】本題主要考查了二次函數(shù)的應用,準確求解二次函數(shù)的解析式及一般式與頂點式的互化是解題的關鍵.20.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A、B、C、D中的某一站出地鐵,再騎共享單車回家,設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關于x的一次函數(shù),其關系如下表:地鐵站ABCDEx(千米)891011.513Y1(分鐘)1820222528(1)求y1關于x的函數(shù)表達式;(2)李華騎單車的時間(單位:分鐘)也受x的影響,其關系可以用SKIPIF1<0來描述,請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家里所需的時間最短?并求出最短時間.【答案】(1)SKIPIF1<0;(2)李華應選擇在B站出地鐵,才能使他從文化宮回到家里所需的時間最短,最短時間為SKIPIF1<0分鐘【分析】(1)先設函數(shù)表達式為SKIPIF1<0,再結(jié)合表格數(shù)據(jù)利用待定系數(shù)法求解即可;(2)設李華從文化宮回到家所需時間為y,則SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì)進一步分析求解即可.【解答】(1)設SKIPIF1<0關于x的函數(shù)表達式為:SKIPIF1<0,由表格可知:當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0關于x的函數(shù)表達式為:SKIPIF1<0;(2)設李華從文化宮回到家所需時間為y,則SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0,∴當SKIPIF1<0時,y有最小值,且SKIPIF1<0,∴李華應選擇在B站出地鐵,才能使他從文化宮回到家里所需的時間最短,最短時間為SKIPIF1<0分鐘.【點評】本題主要考查了一次函數(shù)與二次函數(shù)的性質(zhì)的綜合應用,熟練掌握相關方法是解題關鍵.21.如圖,已知拋物線SKIPIF1<0與x軸正半軸交于點SKIPIF1<0,與SKIPIF1<0軸交于點SKIPIF1<0,點SKIPIF1<0是SKIPIF1<0軸上一動點,過點SKIPIF1<0作SKIPIF1<0軸的垂線交拋物線于點SKIPIF1<0,交直線SKIPIF1<0于點SKIPIF1<0,設SKIPIF1<0.(1)求拋物線的函數(shù)表達式;(2)當SKIPIF1<0時,求線段SKIPIF1<0的最大值;(3)若SKIPIF1<0點在SKIPIF1<0正半軸移動時,在SKIPIF1<0和SKIPIF1<0中當其中一個三角形的面積是另一個三角形面積的2倍時,求相應SKIPIF1<0的值;(4)若點SKIPIF1<0在拋物線上,點SKIPIF1<0在線段SKIPIF1<0的中垂線上,點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點的四邊形是平行四邊形,求SKIPIF1<0點的橫坐標.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0;(4)SKIPIF1<0或SKIPIF1<0【分析】(1)用待定系數(shù)法求出拋物線解析式即可;(2)先確定出直線AB解析式,進而得出點D和點C的坐標,得出CD的函數(shù)關系式,即可得出結(jié)論;(3)先確定SKIPIF1<0,再分兩種情況解絕對值方程即可;(4)由點A和點B的坐標得出中點和△AOB是等腰直角三角形,可得線段SKIPIF1<0的中垂線經(jīng)過原點,設線段SKIPIF1<0的中垂線為SKIPIF1<0,聯(lián)立方程組求解即可得出答案.【解答】解:(1)拋物線SKIPIF1<0與x軸正半軸交于點SKIPIF1<0,與SKIPIF1<0軸交于點SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴拋物線的函數(shù)表達式為SKIPIF1<0;(2)∵SKIPIF1<0,SKIPIF1<0,∴直線AB的解析式為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;(3)由(2)可知,SKIPIF1<0,①當SKIPIF1<0時,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去);②當SKIPIF1<0時,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去);∵SKIPIF1<0點在SKIPIF1<0正半軸移動,∴SKIPIF1<0或SKIPIF1<0,綜上所述,SKIPIF1<0或SKIPIF1<0;(4)∵SKIPIF1<0,SKIPIF1<0,即OA=OB,∴中點SKIPIF1<0,△AOB是等腰直角三角形,∴線段SKIPIF1<0的中垂線經(jīng)過原點,∵點SKIPIF1<0在線段SKIPIF1<0的中垂線上,設線段SKIPIF1<0的中垂線為SKIPIF1<0,把SKIPIF1<0代入,得:SKIPIF1<0,SKIPIF1<0,把①代入②,化簡得:SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0點的橫坐標為SKIPIF1<0或SKIPIF1<0.【點評】本題是二次函數(shù)綜合題,主要考查了待定系數(shù)法、極值、絕對值方程、線段的中垂線、解一元二次方程等知識.22.函數(shù)SKIPIF1<0的圖象記為SKIPIF1<0(SKIPIF1<0為常數(shù)),當SKIPIF1<0與SKIPIF1<0軸存在兩個交點時,設交點為SKIPIF1<0和SKIPIF1<0(點SKIPIF1<0在點SKIPIF1<0的左側(cè)),(1)當SKIPIF1<0時,直接寫出與時間之間的函數(shù)的關系式;(2)當SKIPIF1<0時,求出點SKIPIF1<0和點SKIPIF1<0的坐標;(3)當SKIPIF1<0在SKIPIF1<0部分的最高點到SKIPIF1<0軸的距離為2時,求SKIPIF1<0的值;(4)點SKIPIF1<0的坐標為SKIPIF1<0,點SKIPIF1<0的坐標為SKIPIF1<0,當SKIPIF1<0與線段SKIPIF1<0有且僅有一個公共點時,直接寫出SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)4或-4;(4)SKIPIF1<0或SKIPIF1<0【分析】(1)將m=0代入函數(shù)即可得出結(jié)果;(2)將m=6代入得到函數(shù)解析式,再令y=0即可得到結(jié)果;(3)分兩種情況討論即可:①當m>0時,②當m<0時;(4)將SKIPIF1<0,SKIPIF1<0分別代入解析式即可得出結(jié)果.【解答】解:(1)SKIPIF1<0(2)將m=6時,代入解析式得到SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;(3)當SKIPIF1<0時,SKIPIF1<0的最高點即為SKIPIF1<0,則SKIPIF1<0(舍),SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的最高點即為SKIPIF1<0,則SKIPIF1<0(舍),SKIPIF1<0,(4)SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0或SKIPIF1<0.【點評】本題主要考查的是分段函數(shù),根據(jù)題目要求正確的分析每個題是解題的關鍵.23.當SKIPIF1<0值相同時,我們把正比例函數(shù)SKIPIF1<0與反比例函數(shù)SKIPIF1<0叫做“關聯(lián)函數(shù)",可以通過圖象研究“關聯(lián)函數(shù)”的性質(zhì).小明根據(jù)學習函數(shù)的經(jīng)驗,先以SKIPIF1<0與SKIPIF1<0為例對“關聯(lián)函數(shù)”進行了探究.下面是小明的探究過程,請你將它補充完整;(1)如圖,在同一坐標系中畫出這兩個函數(shù)的圖象.設這兩個函數(shù)圖象的交點分別為A,B,則點A的坐標為(-2,-1),點B的坐標為_______.(2)點SKIPIF1<0是函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象上一個動點(點SKIPIF1<0不與點SKIPIF1<0重合),設點SKIPIF1<0的坐標為SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0.①結(jié)論1:作直線SKIPIF1<0分別與SKIPIF1<0軸交于點SKIPIF1<0,則在點SKIPIF1<0運動的過程中,總有SKIPIF1<0.證明:設直線SKIPIF1<0的解析式為SKIPIF1<0,將點SKIPIF1<0和點SKIPIF1<0的坐標代入,得SKIPIF1<0,解得SKIPIF1<0則直線SKIPIF1<0的解析式為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,則點的坐標為SKIPIF1<0,同理可求,直線SKIPIF1<0的解析式為SKIPIF1<0,點SKIPIF1<0的坐標為_________.請你繼續(xù)完成證明SKIPIF1<0的后續(xù)過程:②結(jié)論2:設SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的函數(shù).請你直接寫出SKIPIF1<0與SKIPIF1<0的函數(shù)表達式.【答案】(1)SKIPIF1<0;(2)①SKIPIF1<0,SKIPIF1<0;證明見解析;②SKIPIF1<0.【分析】(1)聯(lián)立直線SKIPIF1<0與反比例函數(shù)SKIPIF1<0,然后求解即可;(2)①設直線SKIPIF1<0的解析式為SKIPIF1<0,將點SKIPIF1<0和點SKIPIF1<0的坐標代入,然后可得直線SKIPIF1<0的解析式,進而可得點C坐標,同理可得點D坐標,如圖,過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,則點SKIPIF1<0的坐標為SKIPIF1<0,則有SKIPIF1<0,進而可進行求解;②根據(jù)題意可分兩種情況進行分類求解,即當SKIPIF1<0時和當SKIPIF1<0時,則SKIPIF1<0的面積為SKIPIF1<0與t的函數(shù)關系式可求解.【解答】解:(1)∵①與SKIPIF1<0②,聯(lián)立①②解得,SKIPIF1<0(是SKIPIF1<0的縱橫坐標),SKIPIF1<0故答案為:SKIPIF1<0;SKIPIF1<0①設直線SKIPIF1<0的解析式為SKIPIF1<0,將點SKIPIF1<0和點SKIPIF1<0的坐標代入,得SKIPIF1<0,解得SKIPIF1<0,則直線SKIPIF1<0的解析式為SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則點SKIPIF1<0的坐標為SKIPIF1<0,同理.直線SKIPIF1<0的解析式為SKIPIF1<0;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0的坐標為SKIPIF1<0,如圖,過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,則點SKIPIF1<0的坐標為SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論