延安市重點中學2024屆數(shù)學高二上期末監(jiān)測模擬試題含解析_第1頁
延安市重點中學2024屆數(shù)學高二上期末監(jiān)測模擬試題含解析_第2頁
延安市重點中學2024屆數(shù)學高二上期末監(jiān)測模擬試題含解析_第3頁
延安市重點中學2024屆數(shù)學高二上期末監(jiān)測模擬試題含解析_第4頁
延安市重點中學2024屆數(shù)學高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

延安市重點中學2024屆數(shù)學高二上期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,AC與BD的交點為M.設,則下列向量中與相等的向量是()A. B.C. D.2.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.3.某綜合實踐小組設計了一個“雙曲線型花瓶”.他們的設計思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉一周,得到花瓶的側面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關數(shù)據(jù):,,,,,其中B是雙曲線的一個頂點.小組中甲、乙、丙、丁四位同學分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結果如下表所示學生甲乙丙丁估算結果()其中估算結果最接近花瓶的容積的同學是()(參考公式:,,)A.甲 B.乙C.丙 D.丁4.設、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.5.由倫敦著名建筑事務所SteynStudio設計的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學與建筑完美結合造就的藝術品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.6.設滿足則的最大值為A. B.2C.4 D.167.為了調查修水縣2019年高考數(shù)學成績,在高考后對我縣6000名考生進行了抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數(shù)學成績作為一個樣本,這項調查宜采用的抽樣方法是()A.系統(tǒng)抽樣法 B.分層抽樣法C.抽簽法 D.簡單的隨機抽樣法8.函數(shù)在定義域上是增函數(shù),則實數(shù)m的取值范圍為()A. B.C. D.9.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.10.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結論,其中正確的是()A.由大到小的第八個矩形塊中應填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是11.已知雙曲線:的左、右焦點分別為,,點在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.12.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為R的圓外接于,且,若,則面積的最大值為________.14.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________15.已知B(,0)是圓A:內一點,點C是圓A上任意一點,線段BC的垂直平分線與AC相交于點D.則動點D的軌跡方程為_________________.16.已知,,且,則的值是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.18.(12分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.19.(12分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,,是數(shù)列的前項和,求使成立的最大的正整數(shù).20.(12分)在四棱錐中,平面,底面是邊長為2的菱形,分別為的中點.(1)證明:平面;(2)求三棱錐的體積.21.(12分)已知拋物線,直線交于、兩點,且當時,.(1)求的值;(2)如圖,拋物線在、兩點處的切線分別與軸交于、,和交于,.證明:存在實數(shù),使得.22.(10分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設,求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】根據(jù)代入計算化簡即可.【題目詳解】故選:B.2、D【解題分析】設,由雙曲線的性質可得的值,再由,根據(jù)勾股定理可得的值,進而求得,最后利用等面積法,即可求解【題目詳解】設,,為雙曲線的兩個焦點,設焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設的高為,則為點P到x軸的距離,則,故選:D【題目點撥】本題考查雙曲線的性質,難度不大.3、D【解題分析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對幾何體的體積進行估計即可.【題目詳解】可將幾何體看作一個以為半徑,高為的圓柱,再加上兩個曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學的估算,故選:D4、A【解題分析】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結果.【題目詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,由橢圓和雙曲線的定義可得,所以,,設,因為,則,由勾股定理得,即,整理得,故.故選:A.5、B【解題分析】求出的值,可得出雙曲線的漸近線方程.【題目詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.6、C【解題分析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質是把代數(shù)問題幾何化,即數(shù)形結合的思想.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點或邊界上取得.7、B【解題分析】考生分為幾個不同的類型或層次,由此可以確定抽樣方法;【題目詳解】6000名考生進行抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數(shù)學成績作為一個樣本又文科考生、理科考生、藝術和體育類考生會存在差異,采用分層抽樣法較好故選:B.【題目點撥】本題主要考查的是分層抽樣,掌握分層抽樣的有關知識是解題的關鍵,屬于基礎題.8、A【解題分析】根據(jù)導數(shù)與單調性的關系即可求出【題目詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A9、D【解題分析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【題目詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.10、B【解題分析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【題目詳解】設每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.11、C【解題分析】根據(jù)雙曲線的幾何性質,結合余弦定理分別討論當為鈍角時的取值范圍,根據(jù)雙曲線的對稱性,可以只考慮點在雙曲線上第一象限部分即可.【題目詳解】由題:雙曲線:的左、右焦點分別為,,點在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對稱性不妨考慮點在雙曲線第一象限部分:當為鈍角時,在中,設,有,,即,,所以;當時,所在直線方程,所以,,,根據(jù)圖象可得要使,點向右上方移動,此時,綜上所述:的取值范圍是.故選:C【題目點撥】此題考查雙曲線中焦點三角形相關計算,關鍵在于根據(jù)幾何意義結合特殊情況分類討論,體現(xiàn)數(shù)形結合思想.12、D【解題分析】根據(jù)橢圓定義及正三角形的性質可得到\,再在中運用余弦定理得到、的關系,進而求得橢圓的離心率【題目詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【題目點撥】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用正弦定理將已知條件轉化為邊之間的關系,然后用余弦定理求得C;利用三角形面積公式,結合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計算得結論.【題目詳解】因為所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以當時,S最大,.若,則面積的最大值為.故答案為:.【題目點撥】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質,屬于中檔題.14、【解題分析】根據(jù)題意可以設,求其導數(shù)可知在上的單調性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調性,由可知的零點,最后分類討論即可.【題目詳解】設,則對,,則在上為單調遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調遞減函數(shù),又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.15、【解題分析】利用橢圓的定義可得軌跡方程.【題目詳解】連接,由題意,,則,由橢圓的定義可得動點D的軌跡為橢圓,其焦點坐標為,長半軸長為2,故短半軸長為1,故軌跡方程為:.故答案為:.16、【解題分析】根據(jù)空間向量可得,結合計算即可.【題目詳解】由題意知,,所以,解得.故答案:3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解題分析】(1)利用兩點間的距離公式和直線與圓相切的性質即可得出;(2)假設存在點,滿足題設條件,設直線的方程,根據(jù)韋達定理即可求出點的坐標【小問1詳解】設動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設,由得設,,,,則,由①式得,,即消去,,得,即,,,存在點使得18、(1)(2)或【解題分析】(1)根據(jù)垂徑定理,可直接計算出圓的半徑;(2)根據(jù)直線的斜率是否存在分類討論,斜率不存在時,可得到直線方程為的直線滿足題意,斜率存在時,利用直線與圓相切,即到直線的距離等于半徑,然后解出關于斜率的方程即可.【小問1詳解】不妨設圓的半徑為,根據(jù)垂徑定理,可得:解得:則圓的方程為:【小問2詳解】當直線的斜率不存在時,則有:故此時直線與圓相切,滿足題意當直線的斜率存在時,不妨設直線的斜率為,點的直線的距離為直線的方程為:則有:解得:,此時直線的方程為:綜上可得,直線的方程為:或19、(1)(2)【解題分析】(1)設等差數(shù)列的公差為,根據(jù)已知條件可得出關于實數(shù)的等式,結合可求得的值,由此可得出數(shù)列的通項公式;(2)利用裂項求和法求出,解不等式即可得出結果.【小問1詳解】解:設等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.20、(1)證明見解析(2)【解題分析】(1)取的中點,利用三角形中位線定理可證明BG//EF,由線線平行,可得線面平行;(2根據(jù)圖像可得,以為底面,證明為高,利用三棱錐的體積公式,可得答案;【小問1詳解】取的中點,因為為的中點,所以且,又因為為的中點,四邊形為菱形,所以且,所以且,故四邊形BFEG為平行四邊形,所以BG//EF,因為面面,所以面.【小問2詳解】因為底面是邊長為2的菱形,,則為正三角形,所以因為面,所以為三棱錐的高所以三棱錐的體積.21、(1);(2)證明見解析.【解題分析】(1)將代入拋物線的方程,列出韋達定理,利用弦長公式可得出關于的等式,即可解得正數(shù)的值;(2)將代入,列出韋達定理,求出兩切線方程,進而可求得點的坐標,分、兩種情況討論,在時,推導出、、重合,可得出;在時,求出的中點的坐標,利用斜率關系可得出,結合平面向量的線性運算可證得結論成立.【小問1詳解】解:將代入得,設、,則,由韋達定理可得,則,解得或(舍),故.【小問2詳解】解:將代入中得,設、,則,由韋達定理可得,對求導得,則拋物線在點處的切線方程為,即,①同理拋物線在點處的切線方程為,②聯(lián)立①②得,所以,所以點的坐標為,當時,即切線與交于軸上一點,此時、、重合,由,則,又,則存在使得成立;當時,切線與軸交于點,切線與軸交于點,由,得的中點,由得,即,又,所以,所以,,又,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論