2024屆云南省楚雄州大姚縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
2024屆云南省楚雄州大姚縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
2024屆云南省楚雄州大姚縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
2024屆云南省楚雄州大姚縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
2024屆云南省楚雄州大姚縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆云南省楚雄州大姚縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運送到形狀為四邊形區(qū)域的農(nóng)貿(mào)市場中去,現(xiàn)要求在農(nóng)貿(mào)市場中確定一條界線,使位于界線一側(cè)的點沿道路運送蔬菜較近,而另一側(cè)的點沿道路運送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線2.棱長為1的正四面體的表面積是()A. B.C. D.3.設(shè)A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.04.“,”的否定是A., B.,C., D.,5.已知函數(shù),則函數(shù)在點處的切線方程為()A. B.C. D.6.設(shè)數(shù)列的前項和為,且,則()A. B.C. D.7.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.8.已知數(shù)列滿足,,在()A.25 B.30C.32 D.649.已知點P是雙曲線上的動點,過原點O的直線l與雙曲線分別相交于M、N兩點,則的最小值為()A.4 B.3C.2 D.110.若直線的斜率為,則的傾斜角為()A. B.C. D.11.兩位同學(xué)課余玩一種類似于古代印度的“梵塔游戲”:有3個柱子甲、乙、丙,甲柱上有個盤子,最上面的兩個盤子大小相同,從第二個盤子往下大小不等,大的在下,小的在上(如圖).把這個盤子從甲柱全部移到乙柱游戲結(jié)束,在移動的過程中每次只能移動一個盤子,甲、乙、丙柱都可以利用,且3個柱子上的盤子始終保持小的盤子不能放在大的盤子之下.設(shè)游戲結(jié)束需要移動的最少次數(shù)為,則當(dāng)時,和滿足A. B.C. D.12.如果橢圓的弦被點平分,那么這條弦所在的直線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“若,則”的否命題為______14.某校學(xué)生在研究折紙實驗中發(fā)現(xiàn),當(dāng)對折后紙張達(dá)到一定的厚度時,便不能繼續(xù)對折了.在理想情況下,對折次數(shù)與紙的長邊和厚度有關(guān)系:.現(xiàn)有一張長邊為30cm,厚度為0.05cm的矩形紙,根據(jù)以上信息,當(dāng)對折完4次時,的最小值為________;該矩形紙最多能對折________次.(參考數(shù)值:,)15.在的展開式中,含項的系數(shù)為______(結(jié)果用數(shù)值表示)16.在正方體中,則直線與平面所成角的正弦值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長18.(12分)已知拋物線,直線與交于兩點且(為坐標(biāo)原點)(1)求拋物線的方程;(2)設(shè),若直線的傾斜角互補,求的值19.(12分)在等差數(shù)列中,,前10項和(1)求列通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和20.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值21.(12分)已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設(shè)直線,分別與軸交于點,.判斷,大小關(guān)系,并加以證明.22.(10分)已知各項均為正數(shù)的等比數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】設(shè)是界限上的一點,則,即,再根據(jù)雙曲線的定義即可得出答案.【題目詳解】解:設(shè)是界限上的一點,則,所以,即,在中,,所以點的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.2、D【解題分析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【題目詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D3、A【解題分析】先化簡A-B,發(fā)現(xiàn)其結(jié)果為二項式展開式,然后計算即可【題目詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【題目點撥】本題主要考查了二項式定理的運用,關(guān)鍵是通過化簡能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項式展開式,然后計算出結(jié)果,屬于基礎(chǔ)題4、D【解題分析】通過命題的否定的形式進行判斷【題目詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【題目點撥】本題考查全稱命題的否定,屬基礎(chǔ)題.5、C【解題分析】依據(jù)導(dǎo)數(shù)幾何意義去求函數(shù)在點處的切線方程即可解決.【題目詳解】則,又則函數(shù)在點處的切線方程為,即故選:C6、C【解題分析】利用,把代入中,即可求出答案.【題目詳解】當(dāng)時,.當(dāng)時,.故選:C.7、C【解題分析】利用古典概型的概率公式可求出結(jié)果【題目詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:8、A【解題分析】根據(jù)題中條件,得出數(shù)列公差,進而可求出結(jié)果.【題目詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【題目點撥】本題主要考查等差數(shù)列的基本量運算,屬于基礎(chǔ)題型.9、C【解題分析】根據(jù)雙曲線的對稱性可得為的中點,即可得到,再根據(jù)雙曲線的性質(zhì)計算可得;【題目詳解】解:根據(jù)雙曲線的對稱性可知為的中點,所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點時取等號,所以故選:C10、C【解題分析】設(shè)直線l傾斜角為,根據(jù)題意得到,即可求解.【題目詳解】設(shè)直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.11、C【解題分析】通過寫出幾項,尋找規(guī)律,即可得到和滿足的遞推公式.【題目詳解】若甲柱有個盤,甲柱上的盤從上往下設(shè)為,其中,,當(dāng)時,將移到乙柱,只移動1次;當(dāng)時,將移到乙柱,將移到乙柱,移動2次;當(dāng)時,將移到丙柱,將移到丙柱,將移到乙柱,再將移到乙柱,將移到乙柱,;當(dāng)時,將上面的3個移到丙柱,共次,然后將移到乙柱,再將丙柱的3個移到乙柱,共次,所以次;當(dāng)時,將上面的4個移到丙柱,共次,然后將移到乙柱,再將丙柱的4個移到乙柱,共次,所以次;……以此類推,可知,故選.【題目點撥】主要考查了數(shù)列遞推公式的求解,屬于中檔題.這類型題的關(guān)鍵是寫出幾項,尋找規(guī)律,從而得到對應(yīng)的遞推公式.12、B【解題分析】設(shè)該弦所在直線與橢圓的兩個交點分別為,,則,利用點差法可得答案.【題目詳解】設(shè)該弦所在直線與橢圓的兩個交點分別為,,則因為,兩式相減可得,,即由中點公式可得,所以,即,所以AB所在直線方程為,即故選:B二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解題分析】否命題是對命題的條件和結(jié)論同時否定,同時否定和即可.命題“若,則”的否命題為:若,則考點:四種命題.14、①.64②.6【解題分析】利用即可求解,利用和換底公式進行求解.【題目詳解】令,則,則,即,即當(dāng)對折完4次時,最小值為;由題意,得,,則,所以該矩形紙最多能對折6次.故答案為:64,6.15、12【解題分析】通過二次展開式就可以得到.【題目詳解】的展開式中含含項的系數(shù)為故答案為:1216、【解題分析】建立空間直角坐標(biāo)系,利用空間向量夾角公式進行求解即可【題目詳解】建立如圖所示的空間直角坐標(biāo)系,設(shè)該正方體的棱長為1,所以,,,,因此,,,設(shè)平面的法向量為:,所以有:,令,所以,因此,設(shè)與的夾角為,直線與平面所成角為,所以有,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴18、(1);(2).【解題分析】(1)利用韋達(dá)定理法即求;(2)由題可求,,再結(jié)合條件即得.【小問1詳解】設(shè),,由,得,故,由,可得,即,∴,故拋物線的方程為:;【小問2詳解】設(shè)的傾斜角為,則的傾斜角為,∴由,得,∴,∴,同理,由,得,∴,即,故.19、(1);(2)347.【解題分析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【題目詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為20、(1)(2)【解題分析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為21、(1)(2)(3)見解析【解題分析】(1)由題意求得,所以橢圓的方程為(2)聯(lián)立直線與橢圓方程,由題意可得.三角形的高為.,面積表達(dá)式,當(dāng)且僅當(dāng)時,.即的面積的最大值是(3)結(jié)論為.利用題意有.所以試題解析:解:(Ⅰ)設(shè)橢圓的半焦距為因為橢圓的離心率是,所以,即由解得所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論