北京市順義區(qū)、通州區(qū)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁
北京市順義區(qū)、通州區(qū)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁
北京市順義區(qū)、通州區(qū)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁
北京市順義區(qū)、通州區(qū)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁
北京市順義區(qū)、通州區(qū)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市順義區(qū)、通州區(qū)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的左、右頂點(diǎn)分別為、,點(diǎn)在雙曲線上第一象限內(nèi)的點(diǎn),若的三個(gè)內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.2.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點(diǎn)A、B是的ON邊上的兩個(gè)定點(diǎn),C是OM邊上的一個(gè)動(dòng)點(diǎn),當(dāng)C在何處時(shí),最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點(diǎn)C時(shí),最大.人們稱這一命題為米勒定理.已知點(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),點(diǎn)R的縱坐標(biāo)為()A.1 B.C. D.23.甲、乙、丙、丁共4名同學(xué)進(jìn)行黨史知識(shí)比賽,決出第1名到第4名的名次(名次無重復(fù)),其中前2名將獲得參加市級(jí)比賽的資格,甲和乙去詢問成績(jī),回答者對(duì)甲說:“很遺憾,你沒有獲得參加市級(jí)比賽的資格.”對(duì)乙說:“你當(dāng)然不會(huì)是最差的.”從這兩個(gè)回答分析,4人的排名有()種不同情況.A.6 B.8C.10 D.124.雙曲線的虛軸長(zhǎng)為()A. B.C.3 D.65.在中,角A,B,C的對(duì)邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形6.若實(shí)數(shù)x,y滿足不等式組,則的最小值為()A. B.0C. D.27.已知,是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過點(diǎn)P,且,則C的離心率為()A. B.C. D.8.在數(shù)列中,,則()A. B.C.2 D.19.已知等差數(shù)列的公差,若,,則該數(shù)列的前項(xiàng)和的最大值為()A.30 B.35C.40 D.4510.展開式的第項(xiàng)為()A. B.C. D.11.已知等差數(shù)列滿足,,則()A. B.C. D.12.已知拋物線上的點(diǎn)到該拋物線焦點(diǎn)的距離為,則拋物線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,若面積,則______14.若雙曲線的漸近線與圓相切,則該雙曲線的實(shí)軸長(zhǎng)為______15.已知實(shí)數(shù),,,滿足,,,則的最大值是______16.已知曲線在點(diǎn)處的切線的斜率為,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,且(1)求證:數(shù)列是等差數(shù)列,并求出;(2)數(shù)列前項(xiàng)和為,求18.(12分)已知圓的圓心在直線上,且圓與軸相切于點(diǎn)(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與圓相交于,兩點(diǎn),求的面積19.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)在拋物線上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線交拋物錢C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),記直線OA,OB的斜率分別,,求證:為定值.20.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P在圓上,過點(diǎn)P作軸的垂線,垂足為Q且.(1)求動(dòng)點(diǎn)D的軌跡E的方程;(2)直線與圓相切,且直線與曲線E相交于兩不同的點(diǎn)A、B,T為線段AB的中點(diǎn).線段OA、OB分別與圓O交于M、N兩點(diǎn),記的面積分別為,求的取值范圍.22.(10分)已知橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),,求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】設(shè)點(diǎn),其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【題目詳解】易知點(diǎn)、,設(shè)點(diǎn),其中,,且,,且,,,所以,,,因?yàn)椋?,,則,因此,該雙曲線漸近線方程為.故選:B.2、C【解題分析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點(diǎn)R的縱坐標(biāo).【題目詳解】因?yàn)辄c(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個(gè)定點(diǎn),點(diǎn)R是y軸正半軸上的一動(dòng)點(diǎn),根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時(shí),最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點(diǎn)為(3,0),故弦中點(diǎn)的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點(diǎn)R的縱坐標(biāo)為.故選:C.3、C【解題分析】由題可知甲不在前2名,乙不在最后一名,然后分類討論可得答案.【題目詳解】若甲是最后一名,則其他三人沒有限制,4人排名即為,若甲是第三名,4人的排名為,所以4人的排名有種情況.故選:C4、D【解題分析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【題目詳解】因?yàn)?,所以,所以雙曲線的虛軸長(zhǎng)為.故選:D.5、B【解題分析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【題目詳解】解:在中,已知,,,分別為角,,的對(duì)邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【題目點(diǎn)撥】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題6、A【解題分析】畫出可行域,令,則,結(jié)合圖形求出最小值,即可得解;【題目詳解】解:畫出不等式組,表示的平面區(qū)域如圖陰影部分所示,由,解得,即,令,則.結(jié)合圖形可知當(dāng)過點(diǎn)時(shí),取得最小值,且,即故選:A7、B【解題分析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【題目詳解】在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選:B.【題目點(diǎn)撥】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.8、A【解題分析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計(jì)算得解.【題目詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.9、D【解題分析】利用等差數(shù)列的性質(zhì)求出公差以及首項(xiàng),再由等差數(shù)列的前項(xiàng)和公式即可求解.【題目詳解】等差數(shù)列,由,有,又,公差,所以,,得,,,∴當(dāng)或10時(shí),最大,,故選:D10、B【解題分析】由展開式的通項(xiàng)公式求解即可【題目詳解】因?yàn)?,所以展開式的第項(xiàng)為,故選:B11、D【解題分析】根據(jù)等差數(shù)列的通項(xiàng)公式求出公差,再結(jié)合即可得的值.【題目詳解】因?yàn)槭堑炔顢?shù)列,設(shè)公差為,所以,即,所以,所以,故選:D.12、B【解題分析】由拋物線知識(shí)得出準(zhǔn)線方程,再由點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【題目詳解】由題意知,則準(zhǔn)線為,點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】結(jié)合三角形面積公式與余弦定理得,進(jìn)而得答案.【題目詳解】解:由三角形的面積公式得,所以,因?yàn)?,所以,即,因?yàn)?,所以故答案為?4、【解題分析】由雙曲線方程寫出漸近線,根據(jù)相切關(guān)系,結(jié)合點(diǎn)線距離公式求參數(shù)a,即可確定實(shí)軸長(zhǎng).【題目詳解】由題設(shè),漸近線方程為,且圓心為,半徑為1,所以,由相切關(guān)系知:,可得,又,即,所以雙曲線的實(shí)軸長(zhǎng)為.故答案為:15、10【解題分析】采用數(shù)形結(jié)合法,將所求問題轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,結(jié)合梯形中位線性質(zhì)和三角形三邊關(guān)系可求得答案.【題目詳解】由,,,可知,點(diǎn)在圓上,由,即為等腰直角三角形,結(jié)合點(diǎn)到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,作于于,中點(diǎn)為,中點(diǎn)為,由梯形中位線性質(zhì)可得,,作于,于,連接,則,當(dāng)且僅當(dāng)與重合,三點(diǎn)共線時(shí),有最大值,由點(diǎn)到直線距離公式可得,由幾何性質(zhì)可得,,此時(shí),故的最大值為.故答案為:10.16、【解題分析】對(duì)求導(dǎo),根據(jù)題設(shè)有且,即可得目標(biāo)式的值.【題目詳解】由題設(shè),且定義域?yàn)?,則,所以,整理得,又,所以,兩邊取對(duì)數(shù)有,得:,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解題分析】(1)利用等差數(shù)列的定義可證是等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求.(2)利用錯(cuò)位相減法可求.【小問1詳解】因?yàn)?,是以為首?xiàng),為公差的等差數(shù)列,,.【小問2詳解】,,,.18、(1)(2)4【解題分析】(1)由已知設(shè)圓心,再由相切求圓半徑從而得解.(2)求弦長(zhǎng),再求點(diǎn)到直線的距離,進(jìn)而可得解.【小問1詳解】因?yàn)閳A心在直線上,所以設(shè)圓心,又圓與軸相切于點(diǎn),所以,即圓與軸相切,則圓的半徑,于是圓的方程為【小問2詳解】圓心到直線的距離,則,又到直線的距離為,所以.19、(1)(2)證明見解析【解題分析】(1)將點(diǎn)代入拋物線方程即可求解;(2)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達(dá)定理即可求出的值;當(dāng)直線AB的斜率不存在時(shí),由過點(diǎn)即可求出點(diǎn)和點(diǎn)的坐標(biāo),即可求出的值.【小問1詳解】將點(diǎn)代入得,,∴拋物線的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為,,將聯(lián)立得,,由韋達(dá)定理得:,,,當(dāng)直線AB的斜率不存在時(shí),由直線過點(diǎn),則,,,,綜上所述可知,為定值為.20、(1)(2)【解題分析】(1)根據(jù)已知條件求得等差數(shù)列的首項(xiàng)和公差,由此求得.(2)利用裂項(xiàng)求和法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.21、(1);(2).【解題分析】(1)設(shè)出點(diǎn)D的坐標(biāo),借助向量運(yùn)算表示出點(diǎn)P的坐標(biāo)代入圓O的方程計(jì)算作答.(2)在直線的斜率存在時(shí)設(shè)出其方程,與軌跡E的方程聯(lián)立,借助韋達(dá)定理表示出,再利用二次函數(shù)性質(zhì)計(jì)算得解,然后計(jì)算直線的斜率不存在的值作答.【小問1詳解】設(shè)點(diǎn),則,因,則有,又點(diǎn)P在圓上,即,所以動(dòng)點(diǎn)D的軌跡E的方程是.【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè)其方程為:,因直線與圓相切,則,即,而時(shí),直線與橢圓E相切,不符合題意,因此,由消去x并整理得:,設(shè),則,而點(diǎn)T是線段AB中點(diǎn),則有:,令,則,而,當(dāng),即時(shí),,當(dāng),即時(shí),,而,于是得,當(dāng)直線的斜率不存在時(shí),直線,,此時(shí),所以的取值范圍是.【題目點(diǎn)撥】思路點(diǎn)睛:圓錐曲線中的最值問題,往往需要利用韋達(dá)定理構(gòu)建目標(biāo)的函數(shù)關(guān)系式,自變量可以斜率或點(diǎn)的橫、縱坐標(biāo)等.而目標(biāo)函數(shù)的最值可以通過二次函數(shù)或基本不等式或?qū)?shù)等求得.22、(1);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論