2024屆江蘇省無錫市第一女子中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
2024屆江蘇省無錫市第一女子中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
2024屆江蘇省無錫市第一女子中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
2024屆江蘇省無錫市第一女子中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
2024屆江蘇省無錫市第一女子中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省無錫市第一女子中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線有如下光學(xué)性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過點(diǎn)()A. B.C. D.2.已知,,,,則()A. B.C. D.3.已知橢圓及以下3個(gè)函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個(gè)數(shù)有()A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)4.如圖,直四棱柱的底面是菱形,,,M是的中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.5.有一個(gè)圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點(diǎn),則關(guān)于下列命題:①鉛垂的側(cè)面積為150cm2;②一只螞蟻從P點(diǎn)出發(fā)沿鉛垂側(cè)面爬行一周、最終又回到P點(diǎn)的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯(cuò)誤C.①錯(cuò)誤、②正確6.南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,則第十層球的個(gè)數(shù)為()A.45 B.55C.90 D.1107.已知一個(gè)幾何體的三視圖如圖,則其外接球的體積為()A. B.C. D.8.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實(shí)數(shù)a的取值范圍為()A. B.C. D.9.已知橢圓的長軸長是短軸長的倍,左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn)分別為,坐標(biāo)原點(diǎn)到直線的距離為,則的面積為()A. B.4C. D.10.經(jīng)過點(diǎn)且圓心是兩直線與的交點(diǎn)的圓的方程為()A. B.C. D.11.在中,,則邊的長等于()A. B.C. D.212.某四面體的三視圖如圖所示,該四面體的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn),,點(diǎn)P在x軸上,且,則點(diǎn)P的坐標(biāo)為______14.已知曲線的焦距是10,曲線上的點(diǎn)到一個(gè)焦點(diǎn)的距離是2,則點(diǎn)到另一個(gè)焦點(diǎn)的距離為__________.15.?dāng)?shù)列滿足,,其前n項(xiàng)積為,則______16.已知橢圓的左、右焦點(diǎn)為,過作x軸垂線交橢圓于點(diǎn)P,若為等腰直角三角形,則橢圓的離心率是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖長方體中,,,點(diǎn)為的中點(diǎn).(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.18.(12分)已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點(diǎn),動圓,且點(diǎn)在圓外,過點(diǎn)作圓的兩條切線分別交曲線于點(diǎn),.(i)求證:直線的斜率為定值;(ii)若直線與交于點(diǎn),且時(shí),求直線的方程.19.(12分)如圖甲是由正方形,等邊和等邊組成的一個(gè)平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點(diǎn),且三棱錐和的體積比為,求直線與平面所成角的正弦值.20.(12分)已知函數(shù)(a為非零常數(shù))(1)若f(x)在處的切線經(jīng)過點(diǎn)(2,ln2),求實(shí)數(shù)a的值;(2)有兩個(gè)極值點(diǎn),.①求實(shí)數(shù)a的取值范圍;②若,證明:.21.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過曲線的右焦點(diǎn),傾斜角為的直線交曲線于A,B兩點(diǎn),求.22.(10分)已知橢圓的長軸長是,以其短軸為直徑的圓過橢圓的左右焦點(diǎn),.(1)求橢圓E的方程;(2)過橢圓E左焦點(diǎn)作不與坐標(biāo)軸垂直的直線,交橢圓于M,N兩點(diǎn),線段MN的垂直平分線與y軸負(fù)半軸交于點(diǎn)Q,若點(diǎn)Q的縱坐標(biāo)的最大值是,求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【題目詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D2、D【解題分析】根據(jù)對數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【題目詳解】因?yàn)椋?,故,又,在上的增函?shù),故,故,故選:D.3、C【解題分析】由橢圓的幾何性質(zhì)可得橢圓的圖像關(guān)于原點(diǎn)對稱,因?yàn)楹瘮?shù),函數(shù)為奇函數(shù),其圖像關(guān)于原點(diǎn)對稱,則①②滿足題意,對于函數(shù)在軸右側(cè)時(shí),,只有時(shí),,即函數(shù)在軸右側(cè)的圖像顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關(guān)于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【題目詳解】解:因?yàn)闄E圓的圖像關(guān)于原點(diǎn)對稱,對于①,函數(shù)為奇函數(shù),其圖像關(guān)于原點(diǎn)對稱,即可知的圖象能等分該橢圓面積;對于②,函數(shù)為奇函數(shù),其圖像關(guān)于原點(diǎn)對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數(shù)在軸右側(cè)時(shí),,只有時(shí),,即函數(shù)在軸右側(cè)的圖像(如圖)顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關(guān)于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個(gè)數(shù)有2個(gè),故選C.【題目點(diǎn)撥】本題考查了橢圓的幾何性質(zhì)、函數(shù)的奇偶性及函數(shù)的對稱性,重點(diǎn)考查了函數(shù)的性質(zhì),屬基礎(chǔ)題.4、D【解題分析】用向量分別表示,利用向量的夾角公式即可求解.【題目詳解】由題意可得,故選:D【題目點(diǎn)撥】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎(chǔ)題.5、C【解題分析】根據(jù)圓錐的側(cè)面展開圖為扇形,由扇形的面積公式計(jì)算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計(jì)算即可判斷②.【題目詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側(cè)面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯(cuò)誤.將其側(cè)面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C6、B【解題分析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達(dá)出來,第層有個(gè)球.【題目詳解】根據(jù)規(guī)律,可以得知:第一層有個(gè)球;第二層有個(gè)球;第三層有個(gè)球,則根據(jù)規(guī)律可知:第層有個(gè)球設(shè)第層的小球個(gè)數(shù)為,則有:故第十層球的個(gè)數(shù)為:故選:7、D【解題分析】根據(jù)三視圖還原幾何體,將幾何體補(bǔ)成長方體,計(jì)算出幾何體的外接球直徑,結(jié)合球體體積公式即可得解.【題目詳解】根據(jù)三視圖還原原幾何體,如下圖所示:由圖可知,該幾何體三棱錐,且平面,將三棱錐補(bǔ)成長方體,所以,三棱錐的外接球直徑為,故,因此,該幾何體的外接球的體積為.故選:D【題目點(diǎn)撥】方法點(diǎn)睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解(2)若球面上四點(diǎn)P,A,B,C構(gòu)成的三條線段兩兩互相垂直,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長方體,利用求解8、B【解題分析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【題目詳解】由得,,解得,因?yàn)?,所以所以可得在上恒成立,即在上恒成立,故只需,,?dāng)時(shí),,故故選:B9、C【解題分析】設(shè),根據(jù)題意,可知的方程為直線,根據(jù)原點(diǎn)到直線的距離建立方程,求出,進(jìn)而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【題目詳解】設(shè),由題意可知,其中,所以的方程為,即所以原點(diǎn)到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.10、B【解題分析】求出圓心坐標(biāo)和半徑后,直接寫出圓的標(biāo)準(zhǔn)方程.【題目詳解】由得,即所求圓的圓心坐標(biāo)為.由該圓過點(diǎn),得其半徑為1,故圓的方程為.故選:B.【題目點(diǎn)撥】本題考查了圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.11、A【解題分析】由余弦定理求解【題目詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A12、A【解題分析】根據(jù)三視圖可得如圖所示的幾何體(三棱錐),根據(jù)三視圖中的數(shù)據(jù)可計(jì)算該幾何體的表面積.【題目詳解】根據(jù)三視圖可得如圖所示的幾何體-正三棱錐,其側(cè)面為等腰直角三角形,底面等邊三角形,由三視圖可得該正三棱錐的側(cè)棱長為1,故其表面積為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】設(shè),由,可得,求解即可【題目詳解】設(shè),由故解得:則點(diǎn)P的坐標(biāo)為故答案為:14、或10.【解題分析】對參數(shù)a進(jìn)行討論,考慮曲線是橢圓和雙曲線的情況,進(jìn)而結(jié)合橢圓與雙曲線的定義和性質(zhì)求得答案.【題目詳解】由題意,曲線的半焦距為5,若曲線是焦點(diǎn)在x軸上的橢圓,則a>16,所以,而橢圓上的點(diǎn)到一個(gè)焦點(diǎn)距離是2,則點(diǎn)到另一個(gè)焦點(diǎn)的距離為;若曲線是焦點(diǎn)在y軸上的橢圓,則0<a<16,所以,舍去;若曲線是雙曲線,則a<0,容易判斷雙曲線的焦點(diǎn)在y軸,所以,不妨設(shè)點(diǎn)P在雙曲線的上半支,上下焦點(diǎn)分別為,因?yàn)閷?shí)半軸長為4,容易判斷點(diǎn)P到下焦點(diǎn)的距離的最小值為4+5=9>2,不合題意,所以點(diǎn)P到上焦點(diǎn)的距離為2,則它到下焦點(diǎn)的距離.故答案為:或10.15、【解題分析】根據(jù)數(shù)列的項(xiàng)的周期性,去求的值即可解決.【題目詳解】由,,可得,,,,,,由此可知數(shù)列的項(xiàng)具有周期性,且周期為4,第一周期內(nèi)的四項(xiàng)之積為1,所以數(shù)列的前2022項(xiàng)之積為故答案為:16、##【解題分析】以為等腰直角三角形列方程組可得之間的關(guān)系式,進(jìn)而求得橢圓的離心率.【題目詳解】橢圓的左、右焦點(diǎn)為,點(diǎn)P由為等腰直角三角形可知,,即可化為,故或(舍)故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解題分析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結(jié)合線面垂直的判定定理證明即可;(3)建立空間直角坐標(biāo)系,利用向量法求面面角的余弦值即可.【題目詳解】(1)連接交與點(diǎn),連接四邊形為正方形,點(diǎn)為的中點(diǎn)又點(diǎn)為的中點(diǎn),平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標(biāo)系顯然平面的法向量即為平面的法向量,不妨設(shè)為由(2)可知平面,即平面的法向量為又二面角是鈍角二面角的余弦值為【題目點(diǎn)撥】關(guān)鍵點(diǎn)睛:在第一問中,關(guān)鍵是利用中位線定理找到線線平行,再由定義證明線面平行;在第二問中,關(guān)鍵是利用勾股定理證明線線垂直,從而得出線面垂直;在第三問中,關(guān)鍵是建立坐標(biāo)系,利用向量法求面面角的余弦值.18、(1)(2)(i)答案見解析(ii)或【解題分析】(1)通過幾何關(guān)系可知,且,由此可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且實(shí)軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設(shè)點(diǎn),,直線的方程為,將直線方程與雙曲線方程聯(lián)立利用韋達(dá)定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯(lián)立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據(jù)雙曲線的定義可知,點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且實(shí)軸長為的雙曲線,即,,,則點(diǎn)的軌跡方程為;【小問2詳解】(i)設(shè)點(diǎn),,直線的方程為,聯(lián)立得,其中,且,,,∵曲線上一點(diǎn),∴,由已知條件得直線和直線關(guān)于對稱,則,即,整理得,,,,即,則或,當(dāng),直線方程為,此直線過定點(diǎn),應(yīng)舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當(dāng)時(shí),,,即,,,解得或,但是當(dāng)時(shí),,故應(yīng)舍去,當(dāng)時(shí),直線方程為,當(dāng)時(shí),,即,,,解得(舍去)或,當(dāng)時(shí),直線方程為,故直線的方程為或.19、(1)證明見解析;(2).【解題分析】(1)取的中點(diǎn)為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標(biāo)系,寫出對應(yīng)點(diǎn)的坐標(biāo)和向量的坐標(biāo),再計(jì)算平面法向量,利用所求角的正弦為即得結(jié)果.【題目詳解】(1)證明:如圖,取的中點(diǎn)為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標(biāo)系,根據(jù)邊長關(guān)系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設(shè)平面的法向量為,則,令,得.設(shè)直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【題目點(diǎn)撥】方法點(diǎn)睛:求空間中直線與平面所成角的常見方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂線,通過等體積法間接求點(diǎn)到面的距離,距離與斜線長的比值即線面成角的正弦值;(3)向量法:利用平面法向量與斜線方向向量所成的余弦值的絕對值,即是線面成角的正弦值.20、(1)(2)①(0,1);②證明見解析【解題分析】小問1先求出切線方程,再將點(diǎn)(2,ln2),代入即可求出a的值;小問2的①通過求導(dǎo),再結(jié)合函數(shù)的單調(diào)性求出a的取值范圍;②結(jié)合已知條件,構(gòu)造新函數(shù)即可得到證明.【小問1詳解】,∴切線方程為,將點(diǎn)代入解得:【小問2詳解】①當(dāng)時(shí),即時(shí),,f(x)在(-1,+∞)上單調(diào)遞增;f(x)無極值點(diǎn),當(dāng)時(shí),由得,,故f(x)在(-1,-)上單調(diào)遞增,在(-,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,f(x)有兩個(gè)極值點(diǎn);.當(dāng)時(shí),由得,,f(x)(,)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論