2024學年天津市薊州區(qū)馬伸橋中學高二數(shù)學第一學期期末調研試題含解析_第1頁
2024學年天津市薊州區(qū)馬伸橋中學高二數(shù)學第一學期期末調研試題含解析_第2頁
2024學年天津市薊州區(qū)馬伸橋中學高二數(shù)學第一學期期末調研試題含解析_第3頁
2024學年天津市薊州區(qū)馬伸橋中學高二數(shù)學第一學期期末調研試題含解析_第4頁
2024學年天津市薊州區(qū)馬伸橋中學高二數(shù)學第一學期期末調研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年天津市薊州區(qū)馬伸橋中學高二數(shù)學第一學期期末調研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定2.數(shù)列,,,,…,的通項公式可能是()A. B.C. D.3.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種4.如圖是一個程序框圖,執(zhí)行該程序框圖,則輸出的n值是()A.2 B.3C.4 D.55.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.6.過點且垂直于直線的直線方程為()A. B.C. D.7.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.768.閱讀如圖所示的程序框圖,運行相應的程序,輸出S的結果是()A.128 B.64C.16 D.329.若是等差數(shù)列的前項和,,則()A.13 B.39C.45 D.2110.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-1311.已知圓的圓心在x軸上,半徑為1,且過點,圓:,則圓,的公共弦長為A. B.C. D.212.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定二、填空題:本題共4小題,每小題5分,共20分。13.設函數(shù),若存在實數(shù)使得成立,則的取值范圍是__________.14.已知某次數(shù)學期末試卷中有8道4選1的單選題15.直線l過點P(1,3),且它的一個方向向量為(2,1),則直線l的一般式方程為__________.16.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,當時,;數(shù)列中,.直線經(jīng)過點(1)求數(shù)列的通項公式和;(2)設,求數(shù)列的前n項和,并求的最大整數(shù)n18.(12分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點到平面的距離.19.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標準方程(2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標準方程20.(12分)已知函數(shù)圖像在點處的切線方程為.(1)求實數(shù)、的值;(2)求函數(shù)在上的最值.21.(12分)已知拋物線的焦點為F,點在拋物線上,且在第一象限,的面積為(O為坐標原點).(1)求拋物線的標準方程;(2)經(jīng)過點的直線與交于,兩點,且,異于點,若直線與的斜率存在且不為零,證明:直線與的斜率之積為定值.22.(10分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】利用余弦定理結合橢圓的定義可求得、,即可得出結論.【題目詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.2、D【解題分析】利用數(shù)列前幾項排除A、B、C,即可得解;【題目詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項公式可以為,故選:D3、B【解題分析】按涂色順序進行分四步,根據(jù)分步乘法計數(shù)原理可得解.【題目詳解】按涂色順序進行分四步:涂A部分時,有4種涂法;涂B部分時,有3種涂法;涂C部分時,有2種涂法;涂D部分時,有2種涂法.由分步乘法計數(shù)原理,得不同的涂色方法共有種.故選:B.4、B【解題分析】程序框圖中的循環(huán)結構,一般需重復計算,根據(jù)判斷框中的條件,確定何時終止循環(huán),輸出結果.【題目詳解】初始值:,當時,,進入循環(huán);當時,,進入循環(huán);當時,,終止循環(huán),輸出的值為3.故選:B5、C【解題分析】建立合適的空間直角坐標系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【題目詳解】建立如圖所示的空間直角坐標系.有圖知,由題得、、、.,,.設平面的一個法向量,則,,令,得,,.設直線與平面所成的角為,則.故選:C.【題目點撥】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎題.6、A【題目詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【題目點撥】本題主要考查直線方程的求法,屬基礎題.7、A【解題分析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【題目詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A8、C【解題分析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結果.【題目詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C9、B【解題分析】先根據(jù)等差數(shù)列的通項公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標性質求得答案.【題目詳解】設等差數(shù)列的公差為d,則,則.故選:B.10、A【解題分析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內切,從而可求出結果.【題目詳解】因為圓,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內切,因此,即,解得.故選:A.11、A【解題分析】根據(jù)題意設圓方程為:,代點即可求出,進而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長.【題目詳解】設圓的圓心為,則其標準方程為:,將點代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長為,故選:A.【題目點撥】本題綜合考查圓的方程及直線與圓,圓與圓位置關系,屬于中檔題.一般遇見直線與圓相交問題時,常利用垂徑定理解決問題.12、B【解題分析】構造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【題目詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內,平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】將變形為,令,,分別研究其單調性及值域,使問題轉化為即可.【題目詳解】由題,,令,則,由,得,由,得,所以在遞減,在遞增,所以,令,則,由,得,由,得,所以在遞增,在遞減,所以,若存在實數(shù)使得成立,即存在實數(shù)使得成立,即存在實數(shù)使得恒成立所以,即,解得,所以取值范圍為.故答案為:【題目點撥】關鍵點點睛:本題解題關鍵是將所求問題轉為存在實數(shù)使得恒成立,結合的值域進一步轉化為存在實數(shù)使得恒成立,再只需即可.14、##0.84375【解題分析】合理設出事件,利用全概率公式進行求解.【題目詳解】設小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:15、【解題分析】根據(jù)直線方向向量求出直線斜率即可得直線方程.【題目詳解】因為直線l的一個方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.16、【解題分析】首先構造二面角的平面角,如圖,再分別在和中求解.【題目詳解】作,且,連結,,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2),7【解題分析】(1)根據(jù)之間的遞推關系,可寫出。,采用和相減得方法,可求得,由題意可推得為等差數(shù)列,利用等差數(shù)列的通項公式可求得答案;(2)寫出的表達式,利用錯位相減法可求得數(shù)列的前n項和,進而利用數(shù)列的單調性求的最大整數(shù)n【小問1詳解】∵,∴,則,∴,即,得又,∴,即,可得數(shù)列是以2為首項,以2為公比的等比數(shù)列,則;∵點在直線上,∴,∴,即數(shù)列是等差數(shù)列,又,∴;【小問2詳解】∵,∴,∴,∴,兩式相減可得:,∴,設,則,故,是單調遞增的故當時,單調遞增的,當時,;當時,,故滿足的最大整數(shù)18、(1)略;(2)【解題分析】(1)推導出BD⊥BC,PB⊥BC,從而BC⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點B到面的距離【題目詳解】(1)∵在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC為等邊三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD?平面PBD,∴PD⊥BC(2)由(1)知,,故故得點B到面PCD的距離為【題目點撥】本題考查線線垂直的證明,考查點面距離的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題19、(1)或;(2)【解題分析】(1)根據(jù)題意,由橢圓的幾何性質可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標準方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點坐標,進而可以設雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【題目詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標準方程為或;(2)根據(jù)題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經(jīng)過經(jīng)過點,則有,,聯(lián)立可得:,故雙曲線方程為:【題目點撥】本題考查橢圓、雙曲線的標準方程的求法,涉及橢圓、雙曲線的幾何性質,屬于基礎題20、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解題分析】由曲線在的值以及切線斜率容易確定a與b的值;根據(jù)導數(shù)很容易確定函數(shù)單調區(qū)間以及極值點.【小問1詳解】,,,由于切線方程是,當x=1時,y=-8,即,即=-8……①;又切線的斜率為-12,∴……②;聯(lián)立①②得.【小問2詳解】由(1)得:,;當時,,導函數(shù)圖像如下:在時,單調遞增,時,單調遞減,時單調遞增;∴在x=-1有極大值,x=3有極小值;在區(qū)間內:在x=-1有最大值;在x=3有最小值.21、(1);(2)證明見解析.【解題分析】(1)由題可得,然后結合面積公式可得,即求;(2)通過分類討論,利用韋達定理法結合斜率公式計算即得.【小問1詳解】因為點拋物

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論