版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省部分重點(diǎn)中學(xué)2024學(xué)年數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點(diǎn)F的坐標(biāo)為(c,0),點(diǎn)A是第一象限內(nèi)雙曲線漸近線上的一點(diǎn),O為坐標(biāo)原點(diǎn),滿足|OA|=A.2 B.2 C.2332.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.3.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.54.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.5.劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動(dòng)也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.6.水平放置的,用斜二測(cè)畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.7.如圖在直角坐標(biāo)系中,過原點(diǎn)作曲線的切線,切點(diǎn)為,過點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.8.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.79.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要10.2019年某校迎國(guó)慶70周年歌詠比賽中,甲乙兩個(gè)合唱隊(duì)每場(chǎng)比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個(gè)位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.1211.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個(gè)交點(diǎn)連線正好過點(diǎn),則橢圓的離心率為()A. B. C. D.12.設(shè),,是非零向量.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點(diǎn),則弦的長(zhǎng)為_________14.已知等差數(shù)列的前項(xiàng)和為,且,則______.15.設(shè)為偶函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.關(guān)于函數(shù)的零點(diǎn),有下列三個(gè)命題:①當(dāng)時(shí),存在實(shí)數(shù)m,使函數(shù)恰有5個(gè)不同的零點(diǎn);②若,函數(shù)的零點(diǎn)不超過4個(gè),則;③對(duì),,函數(shù)恰有4個(gè)不同的零點(diǎn),且這4個(gè)零點(diǎn)可以組成等差數(shù)列.其中,正確命題的序號(hào)是_______.16.如圖,在等腰三角形中,已知,,分別是邊上的點(diǎn),且,其中且,若線段的中點(diǎn)分別為,則的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和.18.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.19.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.20.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.21.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;(Ⅲ)對(duì)于(Ⅰ)中的曲線,若直線過點(diǎn)交曲線于點(diǎn),求面積的最大值.22.(10分)如圖,四邊形中,,,,沿對(duì)角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
計(jì)算得到Ac,bca【題目詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【題目點(diǎn)撥】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.2、B【解題分析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【題目詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【題目點(diǎn)撥】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.3、C【解題分析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)得答案.【題目詳解】由,得,解得.故選:C.【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.4、C【解題分析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【題目詳解】依題意得,,當(dāng)時(shí),,因?yàn)椋栽谏蠁握{(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【題目點(diǎn)撥】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.5、C【解題分析】
首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【題目詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【題目點(diǎn)撥】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.6、B【解題分析】
根據(jù)斜二測(cè)畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【題目詳解】根據(jù)“斜二測(cè)畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,它的表面積為.故選:【題目點(diǎn)撥】本題考查斜二測(cè)畫法的應(yīng)用及組合體的表面積求法,難度較易.7、A【解題分析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【題目詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【題目點(diǎn)撥】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.8、B【解題分析】考點(diǎn):程序框圖.分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過程中各變量的值的變化情況,不難給出答案.解:程序在運(yùn)行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時(shí)退出,故選B.9、B【解題分析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【題目詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【題目點(diǎn)撥】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.10、D【解題分析】
中位數(shù)指一串?dāng)?shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個(gè)數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【題目詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【題目點(diǎn)撥】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識(shí),是一道容易題.11、B【解題分析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【題目詳解】易知,且故有,則故選:B【題目點(diǎn)撥】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題12、D【解題分析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問題往往有很好效果.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【題目詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時(shí),到直線的距離,不成立,當(dāng)時(shí),與圓相交于,兩點(diǎn),到直線的距離,故答案為.【題目點(diǎn)撥】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題.14、【解題分析】
根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項(xiàng)和公式求得的值.【題目詳解】因?yàn)闉榈炔顢?shù)列,所以,解得,所以.故答案為:【題目點(diǎn)撥】本小題考查等差數(shù)列的性質(zhì),前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,應(yīng)用意識(shí).15、①②③【解題分析】
根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【題目詳解】解:當(dāng)時(shí)又因?yàn)闉榕己瘮?shù)可畫出的圖象,如下所示:可知當(dāng)時(shí)有5個(gè)不同的零點(diǎn);故①正確;若,函數(shù)的零點(diǎn)不超過4個(gè),即,與的交點(diǎn)不超過4個(gè),時(shí)恒成立又當(dāng)時(shí),在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點(diǎn)不超過個(gè),則,故②正確;對(duì),偶函數(shù)的圖象,如下所示:,使得直線與恰有4個(gè)不同的交點(diǎn)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確.故答案為:①②③【題目點(diǎn)撥】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16、【解題分析】
根據(jù)條件及向量數(shù)量積運(yùn)算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運(yùn)算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【題目詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運(yùn)算可知線段的中點(diǎn)分別為則由向量減法的線性運(yùn)算可得所以因?yàn)?代入化簡(jiǎn)可得因?yàn)樗援?dāng)時(shí),取得最小值因而故答案為:【題目點(diǎn)撥】本題考查了平面向量數(shù)量積的綜合應(yīng)用,向量的線性運(yùn)算及模的求法,二次函數(shù)最值的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)【解題分析】
(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項(xiàng)和.【題目詳解】解:(Ⅰ)當(dāng)時(shí),,故.當(dāng)時(shí),,則,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【題目點(diǎn)撥】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定義法得出(Ⅱ)采用分組求和:把一個(gè)數(shù)列分成幾個(gè)可以直接求和的數(shù)列.18、(1)見解析;(2)【解題分析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個(gè)法向量與平面的一個(gè)法向量,再利用向量數(shù)量積運(yùn)算即可.【題目詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因?yàn)椋云矫?,又平面,所?(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點(diǎn),為的中點(diǎn),所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,,,由平面幾何知識(shí),得.則,,,,所以,,.設(shè)平面的法向量為,由,可得,令,則,,所以.同理,平面的一個(gè)法向量為.設(shè)平面與平面所成角為,則,所以.【題目點(diǎn)撥】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點(diǎn)考查了空間向量的應(yīng)用,屬中檔題.19、(1)證明見解析;(2)證明見解析;【解題分析】
(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【題目詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【題目點(diǎn)撥】本題考查線段中點(diǎn)的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.20、(1)見解析;(2)【解題分析】
(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【題目詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【題目點(diǎn)撥】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解題分析】
(Ⅰ)由,可得,解出即可;(Ⅱ)設(shè)點(diǎn),設(shè)直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設(shè)直線的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關(guān)系、弦長(zhǎng)公式、三角形的面釈計(jì)算公式、基本不等式的性質(zhì),即可求解.【題目詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設(shè)直線,則聯(lián)立,得,,解得:,又由數(shù)形結(jié)合知.設(shè)點(diǎn),則,,,,,即點(diǎn)在直線上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 獸醫(yī)專家2025年度顧問咨詢與技術(shù)支持合同2篇
- 2025版金融理財(cái)產(chǎn)品銷售合同履約保證書4篇
- 2025年度出租車租賃與品牌推廣合作合同3篇
- 2024禮品購(gòu)銷合同模板購(gòu)銷合同范本
- 2024版濟(jì)寧房屋租賃合同范本
- 二零二四年專業(yè)相機(jī)租賃服務(wù)合同附帶攝影師派遣及培訓(xùn)3篇
- 二零二五版茶葉種植基地土地流轉(zhuǎn)租賃合同3篇
- 2025年養(yǎng)老護(hù)理機(jī)構(gòu)PPP項(xiàng)目特許經(jīng)營(yíng)合同3篇
- 2025年度城市基礎(chǔ)設(shè)施建設(shè)不定期借款合同3篇
- 二零二四年度2024綿陽(yáng)租賃保證金合同模板3篇
- 2024-2030年中國(guó)食品飲料灌裝設(shè)備行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 2024年公司保密工作制度(四篇)
- 重慶市康德卷2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析
- 建筑結(jié)構(gòu)課程設(shè)計(jì)成果
- 雙梁橋式起重機(jī)小車改造方案
- 基于AR的無人機(jī)操作訓(xùn)練系統(tǒng)
- XX農(nóng)貿(mào)市場(chǎng)物業(yè)公司管理方案
- 纖維增強(qiáng)復(fù)合材料 單向增強(qiáng)材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測(cè)定 編制說明
- 湖北省襄陽(yáng)市數(shù)學(xué)中考2024年測(cè)試試題及解答
- YYT 0308-2015 醫(yī)用透明質(zhì)酸鈉凝膠
- GB/T 44189-2024政務(wù)服務(wù)便民熱線運(yùn)行指南
評(píng)論
0/150
提交評(píng)論