五一特訓(xùn)突破導(dǎo)數(shù)課件_第1頁(yè)
五一特訓(xùn)突破導(dǎo)數(shù)課件_第2頁(yè)
五一特訓(xùn)突破導(dǎo)數(shù)課件_第3頁(yè)
五一特訓(xùn)突破導(dǎo)數(shù)課件_第4頁(yè)
五一特訓(xùn)突破導(dǎo)數(shù)課件_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

導(dǎo)數(shù)一.解答題(共26小題)1.(2022秋?湖北月考)已知函數(shù)f(x)=e2mx﹣x,m∈R.(1)若m>0,求函數(shù)f(x)的單調(diào)區(qū)間;(2)若任意x≥0,f(x)≥1+mx2,求m的取值范圍.2.(2022?江蘇三模)已知函數(shù)f(x)=ax﹣2ex+3(a∈R),g(x)=lnx+xex(e為自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若a=﹣1,h(x)=f(x)+g(x),當(dāng)時(shí),h(x)∈(m,n)(m,n∈Z),求n﹣m的最小值.3.(2022?齊齊哈爾一模)已知函數(shù)f(x)=x﹣mlnx,其中m∈R.(1)討論f(x)的單調(diào)性;(2)若ex﹣1﹣ax2≥﹣axlnx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.4.(2022春?順德區(qū)校級(jí)期中)已知函數(shù).(1)當(dāng)a=0時(shí),求函數(shù)f(x)在上的最值;(2)討論函數(shù)f(x)的單調(diào)性.5.(2022秋?宛城區(qū)校級(jí)月考)若函數(shù)f(x)=.(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線的方程;(2)當(dāng)a>0,設(shè)g(x)=f(x)+ax2,求g(x)的單調(diào)區(qū)間.6.(2022秋?安陽(yáng)縣校級(jí)月考)已知函數(shù)f(x)=aex+,a∈{R}.(1)若x=e時(shí),f(x)取得極值,求f(x)的單調(diào)區(qū)間;(2)若函數(shù)g(x)=xf(x)+x,x∈[1,+∞),求使g(x)<2恒成立的實(shí)數(shù)a的取值范圍.7.(2022秋?商丘月考)已知函數(shù)f(x)=x2﹣2x+alnx(a∈R).(1)若f(x)的單調(diào)遞減區(qū)間為,求a的值;(2)若x0是f(x)的極大值點(diǎn),且恒成立,求a的取值范圍.8.(2022秋?山東月考)已知函數(shù)f(x)=﹣(m+1)x+mlnx+m,f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).(1)討論f(x)的單調(diào)性;(2)若xf'(x)﹣f(x)≥0恒成立,求m的取值范圍.9.(2022秋?新鄉(xiāng)月考)已知函數(shù)f(x)=lnx﹣x.(1)求f(x)的最值;(2)若函數(shù)(a>0)存在兩個(gè)極小值點(diǎn),求實(shí)數(shù)a的取值范圍.10.(2022秋?山東月考)已知函數(shù)f(x)=e2x﹣x2+(a﹣2)x﹣1.(1)討論函數(shù)g(x)=f(x)+x2的單調(diào)性;(2)若a=0,證明:當(dāng)x>0時(shí),f(x)>0.11.(2022秋?安陽(yáng)月考)已知函數(shù)f(x)=ax2﹣xlnx.(1)若f(x)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)若a=e,證明:ex+(a﹣1)xlnx≥f(x).12.(2022秋?高新區(qū)校級(jí)月考)已知函數(shù)f(x)=lnx﹣ax.(1)求f(x)函數(shù)的單調(diào)區(qū)間;(2)當(dāng)x≥1時(shí),函數(shù)k(x)=(x+1)[f(x)+a]﹣lnx≤0恒成立求實(shí)數(shù)a取值范圍.13.(2022秋?泗水縣期中)已知函數(shù)f(x)=lnx﹣mx+1,g(x)=x(ex﹣2).(1)若f(x)的最大值是1,求m的值;(2)若對(duì)其定義域內(nèi)任意x,f(x)≤g(x)恒成立,求m的取值范圍.14.(2022秋?天心區(qū)校級(jí)月考)設(shè)函數(shù)f(x)=ax2+(2a﹣1)x﹣lnx(a∈R).(1)討論f(x)的單調(diào)性;(2)若函數(shù)g(x)=f(x)﹣(2a﹣1)x﹣1存在兩個(gè)零點(diǎn)x1,x2,證明:.15.(2022秋?聊城期中)已知函數(shù)f(x)=x﹣(a+2)lnx﹣.(1)討論函數(shù)f(x)的單調(diào)性;(2)設(shè)g(x)=ex+mx2﹣e2﹣3,當(dāng)a=e2﹣1時(shí),對(duì)任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),求實(shí)數(shù)m的取值范圍.16.(2022秋?葫蘆島月考)已知函數(shù)f(x)=xlnx﹣ax2.(1)當(dāng)a=e時(shí),證明:f(x)+2x≤0;(2)記函數(shù)g(x)=(x﹣1)ex﹣f(x),若g(x)為增函數(shù),求a的取值范圍.17.(2022秋?臨澧縣校級(jí)月考)已知函數(shù)恰有兩個(gè)極值點(diǎn)x1,x2(x1<x2).(1)求a的取值范圍;(2)證明:.18.(2022秋?臨澧縣校級(jí)月考)已知函數(shù).(1)若f(x)有兩個(gè)不同的極值點(diǎn),求a的取值范圍;(2)設(shè)m>0,n>0,m≠n且mlnn﹣nlnm=m﹣n,求證:mn>e4.19.(2022秋?歷城區(qū)校級(jí)月考)已知函數(shù),a∈R.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),證明:.20.(2022秋?廣東月考)已知函數(shù)f(x)=aex﹣x﹣2,和g(x)=x﹣ln[a(x+2)]+2.(1)若f(x)與g(x)有相同的最小值,求a的值;(2)設(shè)F(x)=f(x)+g(x)+2lna﹣2有兩個(gè)零點(diǎn),求a的取值范圍.21.(2022秋?武漢月考)已知函數(shù)f(x)=(x﹣k﹣3)ex﹣x.(1)討論函數(shù)f(x)的極值點(diǎn)個(gè)數(shù);(2)當(dāng)f(x)恰有一個(gè)極值點(diǎn)x0時(shí),求實(shí)數(shù)k的值,使得f(x0)取最大值.22.(2022?臨沭縣校級(jí)開(kāi)學(xué))已知函數(shù)f(x)=.(1)討論f(x)的零點(diǎn)個(gè)數(shù);(2)證明:f(x).23.(2022秋?信陽(yáng)月考)已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣3(a∈R).(1)求f(x)在點(diǎn)(e,f(e))處的切線方程;(2)若對(duì)于任意的,都有2f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.24.(2022秋?湖北月考)已知函數(shù)f(x)=(k≠0),e=2.71828…是自然對(duì)數(shù)的底數(shù).(1)當(dāng)k=1時(shí),設(shè)f(x)的最小值為m,求證:m<;(2)求證:當(dāng)k≥時(shí),f(x)≥0.25.(2022?安陽(yáng)開(kāi)學(xué))已知函數(shù)f(x)=﹣x+alnx存在兩個(gè)極值點(diǎn)x1,x2.(1)求a的取值范圍;(2)求f(x1)+f(x2)﹣3a的最小值.26.(2022?岳麓區(qū)校級(jí)三模)已知函數(shù).(1)若a=1,求不等式f(lnx)>﹣1的解集;(2)當(dāng)a>1時(shí),求證函數(shù)f(x)在(0,+∞)上存在極值點(diǎn)m,且.

參考答案與試題解析一.解答題(共26小題)1.(2022秋?湖北月考)已知函數(shù)f(x)=e2mx﹣x,m∈R.(1)若m>0,求函數(shù)f(x)的單調(diào)區(qū)間;(2)若任意x≥0,f(x)≥1+mx2,求m的取值范圍.【答案】(1)遞減區(qū)間為;遞增區(qū)間為;(2).【解答】解:(1)對(duì)函數(shù)f(x)求導(dǎo)可得,f'(x)=2me2mx﹣1,當(dāng)m>0時(shí),f'(x)在R上單增,令f'(x)=0,解得,則當(dāng)時(shí),f'(x)<0;當(dāng),時(shí),f'(x)>0,∴f(x)的遞減區(qū)間為;遞增區(qū)間為(2)設(shè)g(x)=f(x)﹣(mx2+1)=e2mx﹣mx2﹣x﹣1,x≥0,g(0)=0,g'(x)=2me2mx﹣2mx﹣1,x≥0,g'(0)=2m﹣1,令h(x)=2me2mx﹣2mx﹣1,h'(x)=(2m)2e2mx﹣2m=2m(2me2mx﹣1)=2mf'(x),x≥0,①當(dāng)2m﹣1≥0,即時(shí),h'(x)≥0在[0,+∞)上恒成立,∴h(x)在[0,+∞)上單增,h(x)≥h(0)≥0,∴g(x)在[0,+∞)上單增,g(x)≥g(0)=0,∴當(dāng)時(shí),不等式恒成立,符合題意;②當(dāng)0<2m﹣1<1,即時(shí),由(1)可得:h'(x)=2mf'(x)<0,在上恒成立,又,∴h'(x)<0在成立,∴h(x)在單調(diào)遞減,h(x)<h(0)=2m﹣1<0,∴h(x)在單調(diào)遞減,g(x)<g(0)=0,與g(x)≥0恒成立矛盾,故不符合題意;③當(dāng)m≤0時(shí),此時(shí),與g(x)≥0恒成立矛盾,綜上,實(shí)數(shù)m的取值范圍是.2.(2022?江蘇三模)已知函數(shù)f(x)=ax﹣2ex+3(a∈R),g(x)=lnx+xex(e為自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若a=﹣1,h(x)=f(x)+g(x),當(dāng)時(shí),h(x)∈(m,n)(m,n∈Z),求n﹣m的最小值.【答案】(1)當(dāng)a≤0時(shí),f(x)的單調(diào)遞減區(qū)間為(﹣∞,+∞),無(wú)增區(qū)間;當(dāng)a>0時(shí),f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)1.【解答】解:(1)f′(x)=a﹣2ex,①當(dāng)a≤0時(shí),f′(x)<0在R上恒成立,則f(x)的單調(diào)遞減區(qū)間為(﹣∞,+∞),無(wú)增區(qū)間;②當(dāng)a>0時(shí),由f′(x)>0得,,由f′(x)<0得,,∴f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;綜上,當(dāng)a≤0時(shí),f(x)的單調(diào)遞減區(qū)間為(﹣∞,+∞),無(wú)增區(qū)間;當(dāng)a>0時(shí),f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)當(dāng)a=﹣1時(shí),h(x)=f(x)+g(x)=(x﹣2)ex+lnx﹣x+3,,則,令,則,∴Q(x)在上單調(diào)遞增,又,故由零點(diǎn)存在性定理可知,存在,使得Q(x0)=0,即,且當(dāng)時(shí),Q(x)<0,h′(x)>0,h(x)單調(diào)遞增,當(dāng)x∈(x0,1)時(shí),Q(x)>0,h′(x)<0,h(x)單調(diào)遞減,∴當(dāng)時(shí),=,即h(x)<0,又,,又m,n∈Z,∴n﹣m的最小值為0﹣(﹣1)=1.3.(2022?齊齊哈爾一模)已知函數(shù)f(x)=x﹣mlnx,其中m∈R.(1)討論f(x)的單調(diào)性;(2)若ex﹣1﹣ax2≥﹣axlnx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.【答案】(1)當(dāng)m≤0,f(x)的單調(diào)遞增區(qū)間為(0,+∞);當(dāng)m>0,f(x)的單調(diào)增區(qū)間為(m,+∞),單調(diào)減區(qū)間為(0,m);(2)(﹣∞,1].【解答】解:(1)因?yàn)?,x>0,當(dāng)m≤0,f'(x)>0恒成立,所以該函數(shù)在(0,+∞)上單調(diào)遞增;當(dāng)m>0,令f'(x)>0,解得x>m,令f'(x)<0,解得0<x<m,所以該函數(shù)的單調(diào)增區(qū)間為(m,+∞),單調(diào)減區(qū)間為(0,m).綜上,當(dāng)m≤0,f(x)的單調(diào)遞增區(qū)間為(0,+∞);當(dāng)m>0,f(x)的單調(diào)增區(qū)間為(m,+∞),單調(diào)減區(qū)間為(0,m).(2)要ex﹣1﹣ax2≥﹣axlnx對(duì)任意的x∈(0,+∞)恒成立,只要ex﹣1≥ax2﹣axlnx=a(x2﹣xlnx),因?yàn)閤2﹣xlnx=x(x﹣lnx)>0,所以只要,令g(x)=,x>0,則g′(x)=,因?yàn)閤﹣1≥lnx,所以當(dāng)x∈(0,1)時(shí),g′(x)<0,g(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時(shí),g′(x)>0,g(x)單調(diào)遞增,所以gmin(x)=g(1)=1,所以a≤gmin(x)=1,即a的取值范圍是(﹣∞,1].4.(2022春?順德區(qū)校級(jí)期中)已知函數(shù).(1)當(dāng)a=0時(shí),求函數(shù)f(x)在上的最值;(2)討論函數(shù)f(x)的單調(diào)性.【答案】(1)最大值為.(2)當(dāng)a≤1時(shí),f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);當(dāng)1<a<e時(shí),f(x)的單調(diào)遞增區(qū)間為(0,lna),(1,+∞),單調(diào)遞減區(qū)間為(lna,1);當(dāng)a=e時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞);當(dāng)a>e時(shí),f(x)的單調(diào)遞增區(qū)間為(0,1),(lna,+∞);單調(diào)遞減區(qū)間為(1,lna);【解答】解:(1)f(x)定義域?yàn)椋?dāng)a=0時(shí),,,令f'(x)=0得x=1,且當(dāng)時(shí),f'(x)<0,f(x)單調(diào)遞減;當(dāng)1<x<2時(shí),f'(x)>0,f(x)單調(diào)遞增;所以f(x)在上的最小值為f(1)=e;最大值為.(2)f(x)定義域?yàn)椋?,+∞),,當(dāng)a≤0時(shí),令f'(x)=0,得x=1,當(dāng)0<x<1時(shí),f'(x)<0,f(x)單調(diào)遞減;當(dāng)x>1時(shí),f'(x)>0,f(x)單調(diào)遞增;當(dāng)a>0時(shí),令f'(x)=0,得x=1或x=lna.所以:當(dāng)0<a≤1時(shí),當(dāng)0<x<1時(shí),f'(x)<0,f(x)單調(diào)遞減;當(dāng)x>1時(shí),f'(x)>0,f(x)單調(diào)遞增;當(dāng)1<a<e時(shí),當(dāng)lna<x<1時(shí),f'(x)<0,f(x)單調(diào)遞減;當(dāng)0<x<lna或x>1時(shí),f'(x)>0,f(x)單調(diào)遞增;當(dāng)a=e時(shí),f'(x)>0在定義域上恒成立,f(x)單調(diào)遞增;當(dāng)a>e時(shí),當(dāng)1<x<lna時(shí),f'(x)<0,f(x)單調(diào)遞減;當(dāng)0<x<1或x>lna時(shí),f'(x)>0,f(x)單調(diào)遞增;綜上:當(dāng)a≤1時(shí),f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);當(dāng)1<a<e時(shí),f(x)的單調(diào)遞增區(qū)間為(0,lna),(1,+∞),單調(diào)遞減區(qū)間為(lna,1);當(dāng)a=e時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞);當(dāng)a>e時(shí),f(x)的單調(diào)遞增區(qū)間為(0,1),(lna,+∞);單調(diào)遞減區(qū)間為(1,lna);5.(2022秋?宛城區(qū)校級(jí)月考)若函數(shù)f(x)=.(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線的方程;(2)當(dāng)a>0,設(shè)g(x)=f(x)+ax2,求g(x)的單調(diào)區(qū)間.【答案】(1)y=1;(2)當(dāng)a>1時(shí),g(x)的單調(diào)遞增區(qū)間為(0,+∞),(﹣∞,﹣lna),單調(diào)遞減區(qū)間為(0,﹣lna),當(dāng)a=1時(shí),g(x)的單調(diào)遞增區(qū)間為R,沒(méi)有單調(diào)遞減區(qū)間,0<a<1時(shí),g(x)的單調(diào)遞增區(qū)間為(﹣∞,0),(﹣lna,+∞),單調(diào)遞減區(qū)間為(lna,0).【解答】解:(1)由題意得f(0)=1,因?yàn)閒′(x)=,f′(0)=0,所以曲線y=f(x)在點(diǎn)(0,f(0))處的切線的方程為y=1;(2)當(dāng)a>0,設(shè)g(x)=(x+1)e﹣x+ax2,則g′(x)=ax﹣,令g′(x)=0可得x=0或x=﹣lna,當(dāng)0<a<1時(shí),lna<0,令g′(x)>0,可得x<0或x>﹣lna,令g′(x)<0,可得0<x<﹣lna,故g(x)的單調(diào)遞增區(qū)間為(﹣∞,0),(﹣lna,+∞),單調(diào)遞減區(qū)間為(0,﹣lna),當(dāng)a>1時(shí),lna>0,當(dāng)x>0或x<﹣lna時(shí),g′(x)>0,g(x)單調(diào)遞增,當(dāng)﹣lna<x<0時(shí),g′(x)<0,g(x)單調(diào)遞減,故g(x)的單調(diào)遞增區(qū)間為(0,+∞),(﹣∞,﹣lna),單調(diào)遞減區(qū)間為(﹣lna,0),當(dāng)a=1時(shí),lna=0,g′(x)=x(1﹣ex)≥0恒成立,所以g(x)的單調(diào)遞增區(qū)間為R,沒(méi)有單調(diào)遞減區(qū)間,綜上,當(dāng)a>1時(shí),g(x)的單調(diào)遞增區(qū)間為(0,+∞),(﹣∞,﹣lna),單調(diào)遞減區(qū)間為(0,﹣lna),當(dāng)a=1時(shí),g(x)的單調(diào)遞增區(qū)間為R,沒(méi)有單調(diào)遞減區(qū)間,0<a<1時(shí),g(x)的單調(diào)遞增區(qū)間為(﹣∞,0),(﹣lna,+∞),單調(diào)遞減區(qū)間為(lna,0).6.(2022秋?安陽(yáng)縣校級(jí)月考)已知函數(shù)f(x)=aex+,a∈{R}.(1)若x=e時(shí),f(x)取得極值,求f(x)的單調(diào)區(qū)間;(2)若函數(shù)g(x)=xf(x)+x,x∈[1,+∞),求使g(x)<2恒成立的實(shí)數(shù)a的取值范圍.【答案】(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞);(2).【解答】解:(1),因?yàn)楹瘮?shù)在x=e處取得極值,所以,則a=0,當(dāng)a=0時(shí),,得x=e,當(dāng)x∈(0,e)時(shí),f'(x)>0,函數(shù)單調(diào)遞增;當(dāng)x∈(e,+∞)時(shí),f'(x)<0,函數(shù)單調(diào)遞減,所以當(dāng)x=e時(shí),函數(shù)取得極大值,綜上可知函數(shù)的單調(diào)遞增區(qū)間是(0,e),函數(shù)的單調(diào)遞減區(qū)間是(e,+∞);(2)∵g(x)=xf(x)+x=axex+lnx+x<2,x∈[1,+∞)恒成立,即axex+lnxex<2,設(shè)t=xex,t'=(x+1)ex>0,所以函數(shù)t=xex單調(diào)遞增,t≥e,不等式轉(zhuǎn)化為at+lnt<2,t≥e時(shí)恒成立,∴恒成立,即,設(shè),,解得t=e3,當(dāng)t∈[e,e3)時(shí),h'(t)<0,函數(shù)單調(diào)遞減;當(dāng)t∈(e3,+∞)時(shí),h'(t)>0,函數(shù)單調(diào)遞增,所以當(dāng)t=e3時(shí),函數(shù)h(t)取得最小值,最小值是,所以實(shí)數(shù)a的取值范圍為.7.(2022秋?商丘月考)已知函數(shù)f(x)=x2﹣2x+alnx(a∈R).(1)若f(x)的單調(diào)遞減區(qū)間為,求a的值;(2)若x0是f(x)的極大值點(diǎn),且恒成立,求a的取值范圍.【答案】(1).(2).【解答】解:(1)函數(shù)f(x)=x2﹣2x+alnx,定義域?yàn)椋?,+∞),則,由題意可知,f'(x)≤0的解集為,即2x2﹣2x+a≤0的解集為.所以方程2x2﹣2x+a=0的兩個(gè)根分別為,,由根與系數(shù)的關(guān)系可得,解得.(2)若x0是f(x)的極大值點(diǎn),定義域?yàn)椋?,+∞),則f'(x)=0至少有一正根,即方程2x2﹣2x+a=0至少有一正根,①若a=0,則方程2x2﹣2x+a=0的正根為x=1,又因?yàn)楫?dāng)0<x<1時(shí)f'(x)<0,當(dāng)x>1時(shí)f'(x)>0,所以此時(shí)f(x)只有極小值點(diǎn)1,不符合題意,②若a<0,則方程2x2﹣2x+a=0有一正根和一負(fù)根,設(shè)為α,β,且α>0,β<0,則2x2﹣2x+a=2(x﹣α)(x﹣β),因?yàn)楫?dāng)0<x<α?xí)r,f'(x)<0,當(dāng)x>α?xí)r,f'(x)>0,所以此時(shí)f(x)只有極小值點(diǎn)α,不符合題意,③若a>0,由題可知方程2x2﹣2x+a=0應(yīng)有兩個(gè)不等的正根,設(shè)為x1,x2,其中x1<x2,則解得,所以,列表如下:x(0,x1)x1(x1,x2)x2(x2,+∞)f'(x)+0﹣0+f(x)單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以x1是極大值點(diǎn),x2是極小值點(diǎn),則x0=x1,由0<x1<x2,且x1+x2=1,得,由題可知,即alnx0﹣2x0+2a<0當(dāng)時(shí)恒成立,令h(x)=alnx﹣2x+2a,,則,因?yàn)?,所以,所以?dāng)時(shí),h'(x)>0,當(dāng)時(shí),h'(x)<0,所以,解得,又因?yàn)?,所以此時(shí)a的取值范圍是.綜上所述,實(shí)數(shù)a的取值范圍是.8.(2022秋?山東月考)已知函數(shù)f(x)=﹣(m+1)x+mlnx+m,f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).(1)討論f(x)的單調(diào)性;(2)若xf'(x)﹣f(x)≥0恒成立,求m的取值范圍.【答案】(1)詳見(jiàn)解析;(2)[0,e].【解答】解:(1)由題可得,①當(dāng)m≤0時(shí),x∈(0,1)時(shí),f'(x)<0,f(x)單調(diào)遞減;x∈(1,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增;②當(dāng)0<m<1時(shí),x∈(0,m)時(shí),f'(x)>0,f(x)單調(diào)遞增;x∈(m,1)時(shí),f'(x)<0,f(x)單調(diào)遞減;x∈(1,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增;③當(dāng)m=1時(shí),x∈(0,+∞)時(shí),f'(x)≥0,f(x)單調(diào)遞增;④當(dāng)m>1時(shí),x∈(0,1)時(shí),f'(x)>0,f(x)單調(diào)遞增;x∈(1,m)時(shí),f'(x)<0,f(x)單調(diào)遞減;x∈(m,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增.(2)由xf'(x)﹣f(x)≥0恒成立,即,∴,當(dāng)x=1時(shí),恒成立,當(dāng)x>1時(shí),,當(dāng)0<x<1時(shí),,令,則,當(dāng)0<x<1時(shí),g'(x)<0,g(x)單調(diào)遞減且g(x)<0,所以m≥0當(dāng)x>1時(shí),g'(x)=0得,∴時(shí),g'(x)<0,g(x)單調(diào)遞減,時(shí),g'(x)>0,g(x)單調(diào)遞增;∴,故m≤e.綜上,m的取值范圍為[0,e].9.(2022秋?新鄉(xiāng)月考)已知函數(shù)f(x)=lnx﹣x.(1)求f(x)的最值;(2)若函數(shù)(a>0)存在兩個(gè)極小值點(diǎn),求實(shí)數(shù)a的取值范圍.【答案】(1)f(x)max=﹣1,無(wú)最小值;(2).【解答】解:(1)由題知,f(x)的定義域?yàn)椋?,+∞),因?yàn)?,解f'(x)>0得,0<x<1;解f'(x)<0得,x>1,所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,所以f(x)在x=1處有唯一極大值,也是最大值f(x)max=f(1)=﹣1,無(wú)最小值.(2),x∈(0,+∞),則=,x∈(0,+∞).令,則,當(dāng)0<x<1時(shí),u'(x)>0;當(dāng)x>1時(shí),u'(x)<0.所以u(píng)(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,所以u(píng)(x)在x=1處有最大值.所以,函數(shù)圖象如圖所示.因?yàn)閤>0,所以,①當(dāng)時(shí),,此時(shí)H(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以H(x)只有一個(gè)極小值點(diǎn);②當(dāng)時(shí),方程有兩個(gè)根x1,x2,且x1∈(0,1),x2∈(1,+∞).解H'(x)=0,得x=x1或x=x2或x=1,且0<x1<1<x2,當(dāng)x∈(0,x1)時(shí),H'(x)<0,H(x)單調(diào)遞減,當(dāng)x∈(x1,1)時(shí),H'(x)>0,H(x)單調(diào)遞增,當(dāng)x∈(1,x2)時(shí),H'(x)<0,H(x)單調(diào)遞減,當(dāng)x∈(x2,+∞)時(shí),H'(x)>0,H(x)單調(diào)遞增,所以H(x)有兩個(gè)極小值點(diǎn)x1,x2,故實(shí)數(shù)a的取值范圍為.10.(2022秋?山東月考)已知函數(shù)f(x)=e2x﹣x2+(a﹣2)x﹣1.(1)討論函數(shù)g(x)=f(x)+x2的單調(diào)性;(2)若a=0,證明:當(dāng)x>0時(shí),f(x)>0.【答案】(1)見(jiàn)解析;(2)證明見(jiàn)解析.【解答】解:(1)g'(x)=2e2x+a﹣2,當(dāng)a≥2時(shí),g'(x)>0,g(x)在R上單調(diào)遞增;當(dāng)a<2時(shí),由g'(x)=0,得,則g(x)在上單調(diào)遞減,在上單調(diào)遞增.(2)證明:因?yàn)閒(x)=e2x﹣x2﹣2x﹣1,所以f'(x)=2e2x﹣2x﹣2=2(e2x﹣x﹣1),令函數(shù)h(x)=e2x﹣x﹣1,則h'(x)=2e2x﹣1,當(dāng)x>0時(shí),h'(x)>0,所以h(x)在(0,+∞)上單調(diào)遞增,故h(x)>h(0)=0,即f'(x)>0,則f(x)在(0,+∞)上單調(diào)遞增.故當(dāng)x>0時(shí),f(x)>f(0)=0.11.(2022秋?安陽(yáng)月考)已知函數(shù)f(x)=ax2﹣xlnx.(1)若f(x)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)若a=e,證明:ex+(a﹣1)xlnx≥f(x).【答案】(1);(2)證明見(jiàn)解析.【解答】解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),f'(x)=2ax﹣1﹣lnx,因?yàn)楹瘮?shù)f(x)在(0,+∞)上單調(diào)遞增,∴f'(x)≥0,即恒成立,設(shè),其中x>0,則,令g'(x)=0得x=1,當(dāng)0<x<1時(shí),g'(x)>0,此時(shí)函數(shù)g(x)單調(diào)遞增,當(dāng)x>1時(shí),g'(x)<0,此時(shí)函數(shù)g(x)單調(diào)遞減,所以g(x)max=g(1)=1,∴2a≥1,解得,因此,實(shí)數(shù)a的取值范圍為.(2)證明:要證ex+(e﹣1)xlnx≥f(x),即證ex﹣ex(x﹣lnx)≥0,因?yàn)閤>0,即證,即證ex﹣lnx﹣e(x﹣lnx)≥0,令t=x﹣lnx,其中x>0,則,當(dāng)0<x<1時(shí),t'<0,此時(shí)函數(shù)t=x﹣lnx單調(diào)遞減,當(dāng)x>1時(shí),t'>0,此時(shí)函數(shù)t=x﹣lnx單調(diào)遞增,所以tmin=t|x=1=1,即t≥1,即證et﹣et≥0,構(gòu)造函數(shù)h(t)=et﹣et,其中t≥1,則h'(t)=et﹣e≥0,故函數(shù)h(t)在[1,+∞)上單調(diào)遞增,故h(t)≥h(1)=0,即當(dāng)t≥1時(shí),et﹣et≥0,故原不等式得證.12.(2022秋?高新區(qū)校級(jí)月考)已知函數(shù)f(x)=lnx﹣ax.(1)求f(x)函數(shù)的單調(diào)區(qū)間;(2)當(dāng)x≥1時(shí),函數(shù)k(x)=(x+1)[f(x)+a]﹣lnx≤0恒成立求實(shí)數(shù)a取值范圍.【答案】(1)a≤0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞),a>0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞).(2)[,+∞).【解答】解:(1)函數(shù)f(x)=lnx﹣ax的定義域?yàn)椋?,+∞),且f′(x)=﹣a=,①當(dāng)a≤0時(shí),f'(x)=>0,所以f(x)在(0,+∞)上單調(diào)遞增;②當(dāng)a>0時(shí),由f'(x)=>0,解得0<x<,由f'(x)=<0解得x>,所以f(x)在(0,)上單調(diào)遞增,在(,+∞)上單調(diào)遞減;綜上,當(dāng)a≤0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞),當(dāng)a>0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞).(2)由題意知:k(x)≤0恒成立,由k(x)≤0得(x+1)[f(x)+a]﹣lnx≤0,即xlnx﹣a(x2﹣1)≤0,由g(x)=xlnx﹣a(x2﹣1)(x≥1),求得g'(x)=lnx+1﹣2ax,令h(x)=lnx+1﹣2ax,則h′(x)=﹣2a=,①若a≤0,h'(x)>0,g'(x)在[1,+∞)上單調(diào)遞增,故g'(x)≥g'(1)=1﹣2a≥0,所以g(x)在[1,+∞)上單調(diào)遞增,所以g(x)≥g(1)=0,從而xlnx﹣a(x2﹣1)≥0,不符合題意;②若0<a<,當(dāng)x∈(1,)時(shí),h'(x)>0,g'(x)在(1,)上單調(diào)遞增,從而g'(x)>g'(1)=1﹣2a>0,所以g(x)在[1,)上單調(diào)遞增,所以g(x)≥g(1)=0,從而在[1,)上x(chóng)lnx﹣a(x2﹣1)≥0,不符合題意;③若a≥,則h'(x)≤0在[1,+∞)上恒成立,所以g'(x)在[1,+∞)上單調(diào)遞減,且g'(x)≤g'(1)=1﹣2a≤0,從而g(x)在[1,+∞)上單調(diào)遞減,所以g(x)≤g(1)=0,所以xlnx﹣a(x2﹣1)≤0恒成立,綜上,a的取值范圍是[,+∞).13.(2022秋?泗水縣期中)已知函數(shù)f(x)=lnx﹣mx+1,g(x)=x(ex﹣2).(1)若f(x)的最大值是1,求m的值;(2)若對(duì)其定義域內(nèi)任意x,f(x)≤g(x)恒成立,求m的取值范圍.【答案】(1);(2)[1,+∞).【解答】解:(1)(x>0),(1分)當(dāng)m≤0時(shí),f'(x)>0,f(x)在定義域內(nèi)單調(diào)遞增,無(wú)最大值;(2分)當(dāng)m>0時(shí),易知,f(x)單調(diào)遞增;,f(x)單調(diào)遞減,∴時(shí),f(x)取得最大值,解得.(4分)(2)依題意,lnx﹣mx+1≤x(ex﹣2)在(0,+∞)上恒成立,即在(0,+∞)上恒成立,(5分)設(shè),則,(7分)設(shè)h(x)=x2ex+lnx,則,∴h(x)在(0,+∞)上單調(diào)遞增,且,h(1)=e>0,∴h(x)有唯一零點(diǎn)x0,且,(9分)即,兩邊同時(shí)取對(duì)數(shù),得x0+lnx0=ln(﹣lnx0)+(﹣lnx0),構(gòu)造函數(shù)y=x+lnx,易知y=x+lnx在(0,+∞)上是增函數(shù),∴x0=﹣lnx0,即,∴φ(x)在(0,x0)上單調(diào)遞增,在(x0,+∞)上單調(diào)遞減,∴,(11分)∴m﹣2≥﹣1,∴m≥1,故m的取值范圍是[1,+∞).(12分)14.(2022秋?天心區(qū)校級(jí)月考)設(shè)函數(shù)f(x)=ax2+(2a﹣1)x﹣lnx(a∈R).(1)討論f(x)的單調(diào)性;(2)若函數(shù)g(x)=f(x)﹣(2a﹣1)x﹣1存在兩個(gè)零點(diǎn)x1,x2,證明:.【答案】(1)當(dāng)a≤0時(shí),f(x)在(0,+∞)上單調(diào)遞減;當(dāng)a>0時(shí),f(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增;(2)證明過(guò)程請(qǐng)看解答.【解答】(1)解:f'(x)=2ax+(2a﹣1)﹣=,且x>0,當(dāng)a≤0時(shí),f'(x)<0恒成立,所以f(x)在(0,+∞)上單調(diào)遞減;當(dāng)a>0時(shí),令f'(x)=0,則x=,所以f(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,綜上所述,當(dāng)a≤0時(shí),f(x)在(0,+∞)上單調(diào)遞減;當(dāng)a>0時(shí),f(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.(2)證明:g(x)=f(x)﹣(2a﹣1)x﹣1=ax2﹣lnx﹣1,定義域?yàn)椋?,+∞),設(shè)0<x1<x2,則a﹣lnx1﹣1=0,a﹣lnx2﹣1=0,兩式相加得,a(+)﹣lnx1x2﹣2=0,兩式相減得,a(﹣)﹣ln=0,消去a得,lnx1x2+2=?ln=?ln,即lnx1x2=?ln﹣2,令t=∈(0,1),則lnx1x2=?lnt﹣2,要證,需證lnx1x2>ln=﹣1,需證?lnt﹣2>﹣1,即證lnt<,設(shè)h(t)=lnt﹣,t∈(0,1),原問(wèn)題轉(zhuǎn)化為證明h(t)<0在(0,1)上恒成立,則h'(t)=﹣=>0恒成立,所以h(t)在(0,1)上單調(diào)遞增,所以h(t)<h(1)=0,故命題得證.15.(2022秋?聊城期中)已知函數(shù)f(x)=x﹣(a+2)lnx﹣.(1)討論函數(shù)f(x)的單調(diào)性;(2)設(shè)g(x)=ex+mx2﹣e2﹣3,當(dāng)a=e2﹣1時(shí),對(duì)任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),求實(shí)數(shù)m的取值范圍.【答案】(1)當(dāng)a≤﹣1時(shí),單調(diào)遞減區(qū)間有(0,1),單調(diào)遞增區(qū)間有(1,+∞);當(dāng)﹣1<a<0時(shí),單調(diào)遞減區(qū)間有(a+1,1),單調(diào)遞增區(qū)間有(0,a+1),(1,+∞);當(dāng)a=0時(shí),單調(diào)遞增區(qū)間有(0,+∞),無(wú)單調(diào)遞減區(qū)間;當(dāng)a>0時(shí),單調(diào)遞減區(qū)間有(1,a+1),單調(diào)遞增區(qū)間有(0,1),(a+1,+∞).(2)(﹣∞].【解答】解:(1)f(x)定義域?yàn)椋?,+∞),且,令f'(x)=0,得x=1或x=a+1,①當(dāng)a≤﹣1即a+1≤0時(shí):x∈(0,1),f'(x)<0,函數(shù)f(x)單調(diào)遞減;x∈(1,+∞),f'(x)>0,函數(shù)f(x)單調(diào)遞增;②當(dāng)即﹣1<a<0,即0<a+1<1時(shí):x∈(0,a+1),f'(x)>0,函數(shù)f(x)單調(diào)遞增;x∈(a+1,1),f'(x)<0,函數(shù)f(x)單調(diào)遞減;x∈(1,+∞),f'(x)>0,函數(shù)f(x)單調(diào)遞增;③當(dāng)a=0,即a+1=1時(shí):x∈(0,+∞),f'(x)≥0,函數(shù)f(x)單調(diào)遞增;④當(dāng)a>0,即a+1>1時(shí):x∈(0,1),f'(x)>0,函數(shù)f(x)單調(diào)遞增;x∈(1,a+1),f'(x)<0,函數(shù)f(x)單調(diào)遞減;x∈(a+1,+∞),f'(x)>0,函數(shù)f(x)單調(diào)遞增;綜上:當(dāng)a≤﹣1時(shí),單調(diào)遞減區(qū)間有(0,1),單調(diào)遞增區(qū)間有(1,+∞);當(dāng)﹣1<a<0時(shí),單調(diào)遞減區(qū)間有(a+1,1),單調(diào)遞增區(qū)間有(0,a+1),(1,+∞);當(dāng)a=0時(shí),單調(diào)遞增區(qū)間有(0,+∞),無(wú)單調(diào)遞減區(qū)間;當(dāng)a>0時(shí),單調(diào)遞減區(qū)間有(1,a+1),單調(diào)遞增區(qū)間有(0,1),(a+1,+∞).(2)當(dāng)a=e2﹣1時(shí),由(1)得函數(shù)f(x)在區(qū)間(1,e2)上單調(diào)遞減,在區(qū)間(0,1),(e2,+∞)上單調(diào)遞增,從而函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為f(e2)=﹣e2﹣3,即存在x2∈[1,+∞),使,即存在x∈[1,+∞),使得ex+mx2﹣e2﹣3≤﹣e2﹣3,即,令,x∈[1,+∞),則m≤h(x)max,由,當(dāng)x∈(1,2)時(shí)f'(x)>0,函數(shù)f(x)單調(diào)遞增;當(dāng)x∈(2,+∞)時(shí)f'(x)<0,函數(shù)f(x)單調(diào)遞減,所以,所以,故m的取值范圍為(﹣∞].16.(2022秋?葫蘆島月考)已知函數(shù)f(x)=xlnx﹣ax2.(1)當(dāng)a=e時(shí),證明:f(x)+2x≤0;(2)記函數(shù)g(x)=(x﹣1)ex﹣f(x),若g(x)為增函數(shù),求a的取值范圍.【答案】(1)證明過(guò)程見(jiàn)解答;(2).【解答】解:(1)證明:當(dāng)a=e時(shí),f(x)=xlnx﹣2x2(x>0).要證f(x)+2x≤0,即證lnx﹣ex+2≤0.設(shè)h(x)=lnx﹣x+1,則.當(dāng)x∈(0,1)時(shí),h′(x)>0;當(dāng)x∈(1,+∞)時(shí),h′(x)<0.所以h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,所以h(x)max=h(1)=0,所以lnx﹣x+1≤0.所以ln(ex)﹣ex+1≤0,所以lnx﹣ex+2≤0,所以f(x)+2x≤0.(2)因?yàn)間(x)=(x﹣1)ex﹣f(x),所以g(x)=(x﹣1)ex﹣xlnx+ax2,則g′(x)=xex﹣1﹣lnx+2ax.因?yàn)間(x)為增函數(shù),所以g′(x)≥0在(0,+∞)上恒成立,所以在(0,+∞)上恒成立.由(1)可知lnx﹣x+1≤0,則ln(xex)﹣xex+1≤0,即x+lnx﹣xex+1≤0,所以lnx﹣xex+1≤﹣x,即,當(dāng)且僅當(dāng)xex=1時(shí)取等號(hào),所以2a≥﹣1,解得,所以a的取值范圍為.17.(2022秋?臨澧縣校級(jí)月考)已知函數(shù)恰有兩個(gè)極值點(diǎn)x1,x2(x1<x2).(1)求a的取值范圍;(2)證明:.【答案】(1);(2)證明見(jiàn)解析.【解答】解:(1)已知函數(shù),得f′(x)=lnx﹣ax,x∈(0,+∞),函數(shù)佮有兩個(gè)極值點(diǎn)x1,x2(x1<x2),即方程lnx﹣ax=0有兩個(gè)解,令,則,所以當(dāng)x∈(0,e)時(shí),g′(x)>0,g(x)單調(diào)遞增;當(dāng)x∈(e,+∞)時(shí),g′(x)<0,g(x)單調(diào)遞減,又因?yàn)楫?dāng)x趨于0時(shí),g(x)趨于﹣∞;當(dāng)x趨于+∞時(shí),g(x)趨于,所以由圖像得g(x)=a有兩個(gè)交點(diǎn)時(shí),;證明:(2)由(1)得lnx1﹣ax1=0,lnx2﹣ax2=0且,所以,又因?yàn)閘nx1﹣lnx2=a(x1﹣x2),所以,令,證明即可,令,所以恒成立,所以h(t)在(1,+∞)上單調(diào)遞增,又因?yàn)閔(1)=0,所以在(1,+∞)上t恒成立,即.18.(2022秋?臨澧縣校級(jí)月考)已知函數(shù).(1)若f(x)有兩個(gè)不同的極值點(diǎn),求a的取值范圍;(2)設(shè)m>0,n>0,m≠n且mlnn﹣nlnm=m﹣n,求證:mn>e4.【答案】(1)(0,).(2)見(jiàn)證明過(guò)程.【解答】解:(1)f'(x)=x﹣1﹣aex,由f'(x)=0得,令,g′(x)=,令g′(x)=0,解得x=2.x<2時(shí),g′(x)>0;x>2時(shí),g′(x)<0.可得函數(shù)g(x)在(﹣∞,2)上單調(diào)遞增;在(2,+∞)上單調(diào)遞減.∴x=2時(shí),函數(shù)g(x)取得極大值即最大值,g(2)=,又x→+∞時(shí),g(x)→0;x→﹣∞時(shí),g(x)→﹣∞.∵f(x)有兩個(gè)不同的極值點(diǎn)?函數(shù)y=a與y=g(x)的圖象有兩個(gè)不同交點(diǎn),∴,∴a的取值范圍是(0,).(2)證明:由m>0,n>0,m≠n且mlnn﹣nlnm=m﹣n,得=,即=,不妨設(shè)x1=lnm,x2=lnn,x1<x2,∵x1,x2是f(x)的兩個(gè)極值點(diǎn),即為函數(shù)y=g(x)與y=a交點(diǎn)的橫坐標(biāo),由(1)知1<x1<2,x2>2,要證mn>e4,即證lnm+lnn>4?x1+x2>4,即證明x2>4﹣x1>2,即證明g(x1)=g(x2)<g(4﹣x1),令F(x)=h(x)﹣h(4﹣x)=﹣,x∈(1,2),F(xiàn)(2)=0.即證:F(x)<0.F′(x)=﹣=(2﹣x),∵x∈(1,2),2﹣x>0,e4﹣x﹣ex>0,∴(2﹣x)>0,即F′(x)>0,∴函數(shù)F(x)在x∈(1,2)上單調(diào)遞增,∴F(x)<F(2)=0,結(jié)論得證.19.(2022秋?歷城區(qū)校級(jí)月考)已知函數(shù),a∈R.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),證明:.【答案】(1)a≤0時(shí),f(x)在(0,+∞)上單調(diào)遞增;a>0時(shí),f(x)在上單調(diào)遞增,在上單調(diào)遞減;(2)見(jiàn)證明過(guò)程.【解答】解:(1),f(x)的定義域?yàn)椋?,+∞),,(i)當(dāng)a≤0時(shí),f'(x)>0,∴f(x)在(0,+∞)上單調(diào)遞增;(ii)當(dāng)a>0時(shí),若,則f'(x)>0,∴f(x)在上單調(diào)遞增;若,則f'(x)<0,f(x)在區(qū)間上單調(diào)遞增;綜上:a≤0時(shí),f(x)在(0,+∞)上單調(diào)遞增;a>0時(shí),f(x)在上單調(diào)遞增,在上單調(diào)遞減;(2)證法一:,a∈R.∵y=eu+u單調(diào)遞增,令u(x)=lnx﹣ax,∴若函數(shù)f(x)有兩個(gè)零點(diǎn),則u(x1)=u(x2)=0,即:lnx1=ax1,lnx2=ax2,∴,要證,只要證lnx1+lnx2>2,即a(x1+x2)>2.只要證,即證(其中),令,,∴g(t)在(1,+∞)單調(diào)遞增,g(t)>g(1)=0,即(其中)成立,故原不等式成立.證法二:,a∈R.∵y=eu+u單調(diào)遞增,令u(x)=lnx﹣ax,∴若函數(shù)f(x)有兩個(gè)零點(diǎn),則u(x1)=u(x2)=0,即:lnx1=ax1,lnx2=ax2,要證,只要證lnx1+lnx2>2,即a(x1+x2)>2.lnx2﹣lnx1=ax2﹣ax1①.令,則x2=tx1(t>1),將其代入①式得:,.要證a(x1+x2)>2成立,只需證成立,即證lnt+tlnt﹣2t+2>0成立.設(shè)g(t)=lnt+tlnt﹣2t+2(t>1),則.設(shè),則,∴h(t)在(1,+∞)上為增函數(shù),∴h(t)>h(1)=0,即g'(t)>0,∴g(t)在(1,+∞)上為增函數(shù),∴g(t)>g(1)=0,即lnt+tlnt﹣2t+2>0成立.∴成立,因此原結(jié)論成立.證法三:,a∈R.∵y=eu+u單調(diào)遞增,令u(x)=lnx﹣ax,∴若函數(shù)f(x)有兩個(gè)零點(diǎn),則u(x1)=u(x2)=0,即:lnx1=ax1,lnx2=ax2,由(1)問(wèn)可知:a>0,,要證,只要證lnx1+lnx2>2,即.只需證:;由u(x)在區(qū)間上單調(diào)遞減,所以只需證:因?yàn)閡(x1)=u(x2)即證,令,,下證:g(x)<0,,所以g(x)單調(diào)遞增,所以,得證.20.(2022秋?廣東月考)已知函數(shù)f(x)=aex﹣x﹣2,和g(x)=x﹣ln[a(x+2)]+2.(1)若f(x)與g(x)有相同的最小值,求a的值;(2)設(shè)F(x)=f(x)+g(x)+2lna﹣2有兩個(gè)零點(diǎn),求a的取值范圍.【答案】(1)a=e;(2)實(shí)數(shù)a的取值范圍為(0,e).【解答】解:1)f(x)=aex﹣x﹣2,g(x)=x﹣ln[a(x+2)]+2,則f'(x)=aex﹣1,g'(x)=1﹣=,當(dāng)a≤0時(shí),f'(x)<0,f(x)單調(diào)遞減,無(wú)最值,∴a>0,由f'(x)=0得,由f'(x)>0得x>﹣lna,由f'(x)<0得x<﹣lna,∴f(x)在(﹣lna,+∞)上單調(diào)遞增,在(﹣∞,﹣lna)上單調(diào)遞減,∴當(dāng)x=﹣lna時(shí),f(x)取得極小值也是最小值,∴f(x)min=f(﹣lna)=lna﹣1;由g'(x)=0得x=﹣1,當(dāng)﹣2<x<﹣1時(shí),g'(x)<0,當(dāng)x>﹣1時(shí),g'(x)>0,∴g(x)在(﹣2,﹣1)上單調(diào)遞減,在(﹣1,+∞)上單調(diào)遞增,∴當(dāng)x=﹣1時(shí),g(x)取得極小值也是最小值,∴g(x)min=g(﹣1)=1﹣lna,∵f(x)與g(x)有相同的最小值,∴l(xiāng)na﹣1=1﹣lna,解得a=e;(2)∵f(x)=aex﹣x﹣2,g(x)=x﹣ln[a(x+2)]+2,∴F(x)=aex﹣ln(x+2)+lna﹣2(x>﹣2,a>0),∵F(x)=f(x)+g(x)+2lna﹣2有兩個(gè)零點(diǎn),∴aex﹣ln(x+2)+lna﹣2=0在(﹣2,+∞)上有兩個(gè)根,即ex+lna+x+lna=ln(x+2)+x+2=eln(x+2)+ln(x+2),令h(x)=ex+x,則h'(x)=ex+1>0,∴h(x)在(﹣2,+∞)上單調(diào)遞增,又h(x+lna)=h(ln(x+2)),∴x+lna=ln(x+2),則題意轉(zhuǎn)化為lna=ln(x+2)﹣x在(﹣2,+∞)上有兩個(gè)根,令m(x)=ln(x+2)﹣x,則m'(x)==﹣,當(dāng)m'(x)>0得﹣2<x<﹣1,當(dāng)m'(x)<0得x>﹣1,∴m(x)在(﹣2,﹣1)上單調(diào)遞增,在(﹣1,+∞)上單調(diào)遞減,∴m(x)≤m(﹣1)=1,∴l(xiāng)na<1,解得0<a<e,故實(shí)數(shù)a的取值范圍為(0,e).21.(2022秋?武漢月考)已知函數(shù)f(x)=(x﹣k﹣3)ex﹣x.(1)討論函數(shù)f(x)的極值點(diǎn)個(gè)數(shù);(2)當(dāng)f(x)恰有一個(gè)極值點(diǎn)x0時(shí),求實(shí)數(shù)k的值,使得f(x0)取最大值.【答案】(1)當(dāng)k≤﹣1時(shí),f(x)無(wú)極值點(diǎn),當(dāng)﹣1<k<0時(shí),f(x)有兩個(gè)極值點(diǎn),當(dāng)k>0時(shí),f(x)有一個(gè)極值點(diǎn).(2)k=.【解答】解:(1)f′(x)=[ex+(x﹣k﹣3)ex]﹣1=[﹣k],設(shè)g(x)=﹣k,則g′(x)=,設(shè)h(x)=ex+x﹣1,h(x)為增函數(shù),且h(0)=0,所以當(dāng)x<0時(shí),g′(x)<0,g(x)單調(diào)遞減,當(dāng)x>0時(shí),g′(x)>0,g(x)單調(diào)遞增,又g(0)=﹣1﹣k,且x<0時(shí),g(x)<﹣k,①當(dāng)﹣1﹣k≥0,即k≤﹣1時(shí),g(x)≥0,f′(x)≤0,f(x)單調(diào)遞減,此時(shí)f(x)無(wú)極值點(diǎn),②當(dāng)﹣1﹣k<0<﹣k,即﹣1<k<0時(shí),存在x1<0<x2使得g(x1)=g(x2)=0,x<x1時(shí),g(x)>0,f′(x)<0,f(x)單調(diào)遞減,x1<x<x2時(shí),g(x)<0,f′(x)>0,f(x)單調(diào)遞增,x>x2時(shí),g(x)>0,f′(x)<0,f(x)單調(diào)遞減,所以f(x)有兩個(gè)極值點(diǎn),③當(dāng)﹣k<0,即k>0時(shí),存在x0,使得g(x0)=0,x<x0時(shí),g(x)<0,f′(x)<0,f(x)單調(diào)遞減,x>x0時(shí),g(x)>0,f′(x)>0,f(x)單調(diào)遞增,所以f(x)有一個(gè)極值點(diǎn),綜上所述,當(dāng)k≤﹣1時(shí),f(x)無(wú)極值點(diǎn),當(dāng)﹣1<k<0時(shí),f(x)有兩個(gè)極值點(diǎn),當(dāng)k>0時(shí),f(x)有一個(gè)極值點(diǎn).(2)由(1)知,k>0且f′(x0)=0,即k=,此時(shí)x0>2,此時(shí)f(x)在(﹣∞,x0)單調(diào)遞減,在(x0,+∞)單調(diào)遞增,所以f(x0)≤f(3)=﹣e3﹣3,當(dāng)且僅當(dāng)x0=3時(shí),f(x0)取得最大值﹣e3﹣3,所以k==.22.(2022?臨沭縣校級(jí)開(kāi)學(xué))已知函數(shù)f(x)=.(1)討論f(x)的零點(diǎn)個(gè)數(shù);(2)證明:f(x).【答案】(1)f(x)存在兩個(gè)零點(diǎn).(2)證明詳情見(jiàn)解答.【解答】解:(1)f(x)=﹣=,f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),設(shè)g(x)=xex﹣x﹣1,因?yàn)間(0)≠0,所以f(x)與g(x)有相同的零點(diǎn),由g(x)=xex﹣x﹣1,得g′(x)=ex(x+1)﹣1,當(dāng)x>0時(shí),g′(x)>0,g(x)單調(diào)遞增,當(dāng)x<0時(shí),g′(x)<0,g(x)單調(diào)遞減,又g(0)=﹣1<0,g(﹣2)=1﹣>0,g(1)=e﹣2>0,所以g(x)在(﹣2,0)和(0,1)內(nèi)各有一個(gè)零點(diǎn),所以f(x)存在兩個(gè)零點(diǎn).(2)證明:f(x)≥為﹣≥(x>0),即﹣≥0,即證ex﹣≥0,設(shè)F(x)=ex﹣,則F′(x)=,令h(x)=x2ex+lnx,則h′(x)=ex(x2+2x)+>0,所以h(x)=x2ex+lnx在(0,+∞)上單調(diào)遞增,又h(1)=e>0,h()=﹣1=﹣1<0,所以存在x1∈(,1),使得h(x1)=e+lnx1=0,①所以當(dāng)x∈(0,x1)時(shí),h(x)<0,即F′(x)<0,F(xiàn)(x)在(0,x1)上單調(diào)遞減,當(dāng)x∈(x1,+∞)時(shí),h(x)>0,即F′(x)>0,F(xiàn)(x)在(x1,+∞)上單調(diào)遞增,則F(x)min=F(x1)=e﹣②,由①得x1e=﹣lnx1=ln=ln?e,設(shè)φ(x)=xex,φ′(x)=ex+xex=(x+1)ex,所以在(0,+∞)上,φ′(x)>0,φ(x)單調(diào)遞增,所以x1=ln③,將③代入②,得F(x)min=0,所以F(x)≥0,即f(x)≥.23.(2022秋?信陽(yáng)月考)已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣3(a∈R).(1)求f(x)在點(diǎn)(e,f(e))處的切線方程;(2)若對(duì)于任意的,都有2f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.【答案】(1)y=2x﹣e;(2)(﹣∞,4].【解答】解:(1)由f(x)=xlnx,可得f'(x)=lnx+1,所以切線的斜率k=f'(e)=2,又f(e)=e,所以f(x)在(e,f(e))處的切線方程為y﹣e=2(x﹣e),即y=2x﹣e;(2)由2f(x)≥g(x)對(duì)于任意的恒成立,則2xlnx≥﹣x2+ax﹣3對(duì)于任意的恒成立,即對(duì)于任意的恒成立,令h(x)=,,只需滿足a≤h(x)min,又h′(x)=,因?yàn)?,所以由h′(x)=0得x=1,當(dāng)時(shí),h′(x)<0,則h(x)單調(diào)遞減,當(dāng)1<x<e時(shí),h(x)>0,則h(x)單調(diào)遞增,所以h(1)為極小值且為最小值,又h(1)=4,所以a≤4,即實(shí)數(shù)a的取值范圍為(﹣∞,4].24.(2022秋?湖北月考)已知函數(shù)f(x)=(k≠0),e=2.71828…是自然對(duì)數(shù)的底數(shù).(1)當(dāng)k=1時(shí),設(shè)f(x)的最小值為m,求證:m<;(2)求證:當(dāng)k≥時(shí),f(x)≥0.【答案】(1)證明過(guò)程見(jiàn)解答;(2)證明過(guò)程見(jiàn)解答.【解答】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論