廣東省深圳市2023年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第1頁(yè)
廣東省深圳市2023年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第2頁(yè)
廣東省深圳市2023年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第3頁(yè)
廣東省深圳市2023年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第4頁(yè)
廣東省深圳市2023年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.直線的傾斜角是()A.30° B.60° C.120° D.135°2.設(shè)等差數(shù)列的前n項(xiàng)和為,首項(xiàng),公差,,則最大時(shí),n的值為()A.11 B.10 C.9 D.83.已知向量,,則()A. B. C. D.4.已知中,,,,則B等于()A. B.或 C. D.或5.在中,,則這個(gè)三角形的形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形6.已知直線與圓交于M,N兩點(diǎn),若,則k的值為()A. B. C. D.7.若x+2y=4,則2x+4y的最小值是()A.4 B.8 C.2 D.48.以分別表示等差數(shù)列的前項(xiàng)和,若,則的值為A.7 B. C. D.9.不等式的解集為()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)10.為了了解我校今年準(zhǔn)備報(bào)考飛行員的學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫(huà)出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為,第2小組的頻數(shù)為12,則抽取的學(xué)生總?cè)藬?shù)是()A.24 B.48 C.56 D.64二、填空題:本大題共6小題,每小題5分,共30分。11.某地甲乙丙三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為200、300、400?,F(xiàn)為了調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績(jī),采用分層抽樣的方法在這三所學(xué)校中抽取一個(gè)樣本,已知甲學(xué)校中抽取了40名學(xué)生的數(shù)學(xué)成績(jī),那么在丙學(xué)校中抽取的數(shù)學(xué)成績(jī)?nèi)藬?shù)為_(kāi)________。12.已知一個(gè)扇形的周長(zhǎng)為4,則扇形面積的最大值為_(kāi)_____.13.底面邊長(zhǎng)為,高為的直三棱柱形容器內(nèi)放置一氣球,使氣球充氣且盡可能的膨脹(保持球的形狀),則氣球表面積的最大值為_(kāi)______.14.若正四棱錐的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,則該正四棱錐的體積為_(kāi)_____.15.已知點(diǎn),點(diǎn),則________.16.已知數(shù)列的前項(xiàng)和為,若,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知.(1)求不等式的解集;(2)若關(guān)于的不等式能成立,求實(shí)數(shù)的取值范圍.18.如圖,在以、、、、、為頂點(diǎn)的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.19.向量函數(shù).(1)求的最小正周期及單調(diào)增區(qū)間;(2)求在區(qū)間上的最大值和最小值及取最值時(shí)的值.20.在中,角的對(duì)邊分別為.若.(1)求;(2)求的面積的最大值.21.等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)直線方程求出斜率即可得到傾斜角.【詳解】由題:直線的斜率為,所以傾斜角為120°.故選:C【點(diǎn)睛】此題考查根據(jù)直線方程求傾斜角,需要熟練掌握直線傾斜角與斜率的關(guān)系,熟記常見(jiàn)特殊角的三角函數(shù)值.2、B【解析】

由等差數(shù)列前項(xiàng)和公式得出,結(jié)合數(shù)列為遞減數(shù)列確定,從而得到最大時(shí),的值為10.【詳解】由題意可得等差數(shù)列的首項(xiàng),公差則數(shù)列為遞減數(shù)列即當(dāng)時(shí),最大故選B。【點(diǎn)睛】本題對(duì)等差數(shù)列前項(xiàng)和以及通項(xiàng)公式,關(guān)鍵是將轉(zhuǎn)化為,結(jié)合數(shù)列的單調(diào)性確定最大時(shí),的值為10.3、D【解析】

根據(jù)平面向量的數(shù)量積,計(jì)算模長(zhǎng)即可.【詳解】因?yàn)橄蛄?,則,,故選:D.【點(diǎn)睛】本題考查了平面向量的數(shù)量積與模長(zhǎng)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.4、D【解析】

根據(jù)題意和正弦定理求出sinB的值,由邊角關(guān)系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.【詳解】由題意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,則B=60°或B=120°,故選:D.【點(diǎn)睛】本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,注意內(nèi)角的范圍,屬于基礎(chǔ)題.5、B【解析】解:6、C【解析】

先求得圓心到直線的距離,再根據(jù)圓的弦長(zhǎng)公式求解.【詳解】圓心到直線的距離為:由圓的弦長(zhǎng)公式:得解得故選:C【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、B【解析】試題分析:由,當(dāng)且僅當(dāng)時(shí),即等號(hào)成立,故選B.考點(diǎn):基本不等式.8、B【解析】

根據(jù)等差數(shù)列前n項(xiàng)和的性質(zhì),當(dāng)n為奇數(shù)時(shí),,即可把轉(zhuǎn)化為求解.【詳解】因?yàn)閿?shù)列是等差數(shù)列,所以,故,選B.【點(diǎn)睛】本題主要考查了等差數(shù)列前n項(xiàng)和的性質(zhì),屬于中檔題.9、A【解析】

將原不等式化簡(jiǎn)并因式分解,由此求得不等式的解集.【詳解】原不等式等價(jià)于,即,解得.故選A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,屬于基礎(chǔ)題.10、B【解析】

根據(jù)頻率分布直方圖可知從左到右的前3個(gè)小組的頻率之和,再根據(jù)頻率之比可求出第二組頻率,結(jié)合頻數(shù)即可求解.【詳解】由直方圖可知,從左到右的前3個(gè)小組的頻率之和為,又前3個(gè)小組的頻率之比為,所以第二組的頻率為,所以學(xué)生總數(shù),故選B.【點(diǎn)睛】本題主要考查了頻率分布直方圖,頻率,頻數(shù),總體,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、80【解析】

由題意,求得甲乙丙三所學(xué)校抽樣比為,再根據(jù)甲學(xué)校中抽取了40名學(xué)生的數(shù)學(xué)成績(jī),即可求解丙學(xué)校應(yīng)抽取的人數(shù),得到答案.【詳解】由題意知,甲乙丙三所學(xué)校參加聯(lián)考的人數(shù)分別為200、300、400,所以甲乙丙三所學(xué)校抽樣比為,又由甲學(xué)校中抽取了40名學(xué)生的數(shù)學(xué)成績(jī),所以在丙學(xué)校應(yīng)抽取人.【點(diǎn)睛】本題主要考查了分層抽樣概念及其應(yīng)用,其中解答中熟記分層抽樣的概念,以及計(jì)算的方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、1【解析】

表示出扇形的面積,利用二次函數(shù)的單調(diào)性即可得出.【詳解】設(shè)扇形的半徑為,圓心角為,則弧長(zhǎng),,即,該扇形的面積,當(dāng)且僅當(dāng)時(shí)取等號(hào).該扇形的面積的最大值為.故答案:.【點(diǎn)睛】本題考查了弧長(zhǎng)公式與扇形的面積計(jì)算公式、二次函數(shù)的單調(diào)性,考查了計(jì)算能力,屬于基礎(chǔ)題.13、【解析】由題意,氣球充氣且盡可能地膨脹時(shí),氣球的半徑為底面三角形內(nèi)切圓的半徑

∵底面三角形的邊長(zhǎng)分別為,∴底面三角形的邊長(zhǎng)為直角三角形,利用等面積可求得∴氣球表面積為4π.14、4.【解析】

設(shè)正四棱錐的高為PO,連結(jié)AO,在直角三角形POA中,求得高,利用體積公式,即可求解.【詳解】由題意,如圖所示,正四棱錐P-ABCD中,AB=,PA=設(shè)正四棱錐的高為PO,連結(jié)AO,則AO=,在直角三角形POA中,,∴.【點(diǎn)睛】本題主要考查了正棱錐體積的計(jì)算,其中解答中熟記正棱錐的性質(zhì),以及棱錐的體積公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.15、【解析】

直接利用兩點(diǎn)間的距離公式求解即可.【詳解】點(diǎn)A(2,1),B(5,﹣1),則|AB|.故答案為:.【點(diǎn)睛】本題考查兩點(diǎn)間的距離公式的應(yīng)用,基本知識(shí)的考查.16、【解析】

利用和的關(guān)系計(jì)算得到答案.【詳解】當(dāng)時(shí),滿足通項(xiàng)公式故答案為【點(diǎn)睛】本題考查了和的關(guān)系,忽略的情況是容易發(fā)生的錯(cuò)誤.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(1)或.【解析】

(1)運(yùn)用絕對(duì)值的意義,去絕對(duì)值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等價(jià)為|x+l|﹣|x﹣m|的最大值,由絕對(duì)值不等式的性質(zhì),以及絕對(duì)值不等式的解法,可得所求范圍.【詳解】解:(1)由題意可得|x﹣1|+|1x+3|>4,當(dāng)x≥1時(shí),x﹣1+1x+3>4,解得x≥1;當(dāng)x<1時(shí),1﹣x+1x+3>4,解得0<x<1;當(dāng)x時(shí),1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集為(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t時(shí),|t﹣1|+|1t+3|取得最小值,關(guān)于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等價(jià)為|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法和絕對(duì)值不等式的性質(zhì)的運(yùn)用,求最值,考查化簡(jiǎn)變形能力,以及運(yùn)算能力,屬于基礎(chǔ)題.18、(1)證明見(jiàn)解析;(2).【解析】

(1)由面面垂直的性質(zhì)定理得出平面,可得出,再推導(dǎo)出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導(dǎo)出平面,計(jì)算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進(jìn)而得解.【詳解】(1)因?yàn)樗倪呅问蔷匦?,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;?)的面積為,,平面,所以,平面,,故.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了利用三棱錐體積求參數(shù),考查推理能力與計(jì)算能力,屬于中等題.19、(1),(2),最大值為;,最小值為0【解析】

(1)用已知的向量表示出,再進(jìn)行化簡(jiǎn)整理,可得;(2)由正弦函數(shù)的值域可得。【詳解】(1)由題得,,化簡(jiǎn)整理得,因此的最小正周期為,由得,則單調(diào)增區(qū)間為.(2)若,則,當(dāng),即時(shí),取最大值,當(dāng),即時(shí),取最小值0.綜上,當(dāng)時(shí),取最大值,當(dāng)時(shí),取最小值0.【點(diǎn)睛】本題考查向量的運(yùn)算和函數(shù)的周期,單調(diào)區(qū)間以及最值,知識(shí)點(diǎn)考查全面,難度不大。20、(1)(2)【解析】

(1)用正弦定理將式子化為,進(jìn)行整理化簡(jiǎn)可得的值,即得角B;(2)由余弦定理可得關(guān)于的等式,再利用基本不等式和三角形面積公式可得面積最大值。【詳解】(1)由題得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,則的面積的最大值為.【點(diǎn)睛】本題考查用正弦定理求三角形內(nèi)角,由余弦定理和基本不等式求三角形面積最大值,是基礎(chǔ)題型。21、(1);(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論