版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了了解某次數(shù)學競賽中1000名學生的成績,從中抽取一個容量為100的樣本,則每名學生成績?nèi)霕拥臋C會是()A. B. C. D.2.已知直線m,n,平面α,β,給出下列命題:①若m⊥α,n⊥β,且m⊥n,則α⊥β②若m∥α,n∥β,且m∥n,則α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,則m⊥n其中正確的命題是()A.②③ B.①③ C.①④ D.③④3.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為()A. B. C. D.4.若數(shù)列,若,則在下列數(shù)列中,可取遍數(shù)列前項值的數(shù)列為()A. B. C. D.5.已知向量a=(2,1),a?b=10,A.5 B.10 C.5 D.256.已知向量,,,則實數(shù)的值為()A. B. C.2 D.37.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.8.向量,,若,則實數(shù)的值為A. B. C. D.9.計算()A. B. C. D.10.在中,內(nèi)角、、所對的邊分別為、、,且,則下列關于的形狀的說法正確的是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊上一點P落在直線上,則______.12.設函數(shù)的最小值為,則的取值范圍是___________.13.等比數(shù)列的前項和為,若,,成等差數(shù)列,則其公比為_________.14.已知向量,,則的最大值為_______.15.在正項等比數(shù)列中,,,則公比________.16.已知函數(shù)的最小正周期為,若將該函數(shù)的圖像向左平移個單位后,所得圖像關于原點對稱,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為.(Ⅰ)當時,求數(shù)列的通項公式;(Ⅱ)當時,令,求數(shù)列的前項和.18.如圖,在三棱錐中,點,分別是,的中點,,.求證:⑴平面;⑵.19.已知不等式ax2-3x+6>4的解集為{x|x<1(1)求a,b;(2)解關于x的不等式a20.某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);21.已知是復數(shù),與均為實數(shù),且復數(shù)在復平面上對應的點在第一象限,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
因為隨機抽樣是等可能抽樣,每名學生成績被抽到的機會相等,都是.故選A.2、C【解析】
根據(jù)線線、線面和面面有關定理,對選項逐一分析,由此得出正確選項.【詳解】對于①,兩個平面的垂線垂直,那么這兩個平面垂直.所以①正確.對于②,與可能相交,此時并且與兩個平面的交線平行.所以②錯誤.對于③,直線可能為異面直線,所以③錯誤.對于④,兩個平面垂直,那么這兩個平面的垂線垂直.所以④正確.綜上所述,正確命題的序號為①④.故選:C【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.3、C【解析】
試題分析:將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側(cè)面展開圖為長為,寬為1,所以所得幾何體的側(cè)面積為.故選C.4、D【解析】
推導出是以6為周期的周期數(shù)列,從而是可取遍數(shù)列前6項值的數(shù)列.【詳解】數(shù)列,,,,,,,,,是以6為周期的周期數(shù)列,是可取遍數(shù)列前6項值的數(shù)列.故選:D.【點睛】本題考查數(shù)列的周期性與三角函數(shù)知識的交會,考查基本運算求解能力,求解時注意函數(shù)與方程思想的應用.5、C【解析】
將|a+b6、A【解析】
將向量的坐標代入中,利用坐標相等,即可得答案.【詳解】∵,∴.故選:A.【點睛】本題考查向量相等的坐標運算,考查運算求解能力,屬于基礎題.7、B【解析】
通過成等比數(shù)列,可以列出一個等式,根據(jù)等差數(shù)列的性質(zhì),可以把該等式變成關于的方程,解這個方程即可.【詳解】因為成等比數(shù)列,所以有,又因為是公差為2的等差數(shù)列,所以有,故本題選B.【點睛】本題考查了等比中項的性質(zhì),考查了等差數(shù)列的性質(zhì),考查了數(shù)學運算能力.8、C【解析】
利用向量平行的坐標表示,即可求出.【詳解】向量,,,即解得.故選.【點睛】本題主要考查向量平行的坐標表示.9、A【解析】
根據(jù)對數(shù)運算,即可求得答案.【詳解】故選:A.【點睛】本題主要考查了對數(shù)運算,解題關鍵是掌握對數(shù)運算基礎知識,考查了計算能力,屬于基礎題.10、B【解析】
利用三角形的正、余弦定理判定.【詳解】在中,內(nèi)角、、所對的邊分別為、、,且,由正弦定理得,得,則,為直角三角形.故選B【點睛】本題考查了三角形正弦定理的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由于角的終邊上一點P落在直線上,可得,根據(jù)二倍角公式以及三角函數(shù)基本關系,可得,代入,可求得結果.【詳解】因為角的終邊上一點P落在直線上,所以,.故答案為:【點睛】本題考查同角三角函數(shù)的基本關系,巧用“1”是解決本題的關鍵.12、.【解析】
確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,13、【解析】試題分析:、、成等差數(shù)列考點:1.等差數(shù)列性質(zhì);2.等比數(shù)列通項公式14、.【解析】
計算出,利用輔助角公式進行化簡,并求出的最大值,可得出的最大值.【詳解】,,,所以,,當且僅當,即當,等號成立,因此,的最大值為,故答案為.【點睛】本題考查平面向量模的最值的計算,涉及平面向量數(shù)量積的坐標運算以及三角恒等變換思想的應用,考查分析問題和解決問題的能力,屬于中等題.15、【解析】
利用等比中項可求出,再由可求出公比.【詳解】因為,,所以,,解得.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了計算能力,屬于基礎題.16、【解析】
先利用周期公式求出,再利用平移法則得到新的函數(shù)表達式,依據(jù)函數(shù)為奇函數(shù),求出的表達式,即可求出的最小值.【詳解】由得,所以,向左平移個單位后,得到,因為其圖像關于原點對稱,所以函數(shù)為奇函數(shù),有,則,故的最小值為.【點睛】本題主要考查三角函數(shù)的性質(zhì)以及圖像變換,以及型的函數(shù)奇偶性判斷條件.一般地為奇函數(shù),則;為偶函數(shù),則;為奇函數(shù),則;為偶函數(shù),則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用的方法,進行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化簡得,然后利用裂項求和,求出數(shù)列的前項和【詳解】解:(Ⅰ)數(shù)列的前項和為①.當時,,當時,②,①﹣②得:,(首相不符合通項),所以:(Ⅱ)當時,①,當時,②,①﹣②得:,所以:令,所以:,則:【點睛】本題考查求數(shù)列通項的求法的應用,以及利用裂項求和法進行求和,屬于基礎題18、(1)見證明;(2)見證明【解析】
(1)由中位線定理即可說明,由此證明平面;(2)首先證明平面,由線面垂直的性質(zhì)即可證明【詳解】證明:⑴因為在中,點,分別是,的中點所以又因平面,平面從而平面⑵因為點是的中點,且所以又因,平面,平面,故平面因為平面所以【點睛】本題考查線面平行、線面垂直的判定以及線面垂直的性質(zhì),屬于基礎題.19、(1)a=1,b=2;(2)①當c>2時,解集為{x|2<x<c};②當c<2時,解集為{x|c<x<2};③當c=2時,解集為?.【解析】
(1)根據(jù)不等式ax2﹣3x+6>4的解集,利用根與系數(shù)的關系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,討論c的取值,求出對應不等式的解集.【詳解】(1)因為不等式ax2﹣3x+6>4的解集為{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的兩個實數(shù)根,且b>1;由根與系數(shù)的關系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①當c>2時,不等式(x﹣2)(x﹣c)<0的解集為{x|2<x<c};②當c<2時,不等式(x﹣2)(x﹣c)<0的解集為{x|c<x<2};③當c=2時,不等式(x﹣2)(x﹣c)<0的解集為?.【點睛】本題考查了不等式的解法與應用問題,也考查了不等式與方程的關系,考查了分類討論思想,是中檔題.20、(Ⅰ)0.4;(Ⅱ)20.【解析】
(1)首先可以根據(jù)頻率分布直方圖得出樣本中分數(shù)不小于的頻率,然后算出樣本中分數(shù)小于的頻率,最后計算出分數(shù)小于的概率;(2)首先計算出樣本中分數(shù)不小于的頻率,然后計算出分數(shù)在區(qū)間內(nèi)的人數(shù),最后計算出總體中分數(shù)在區(qū)間內(nèi)的人數(shù)。【詳解】(1)根據(jù)頻率分布直方圖可知,樣本中分數(shù)不小于的頻率為,所以樣本中分數(shù)小于的頻率為.所以從總體的名學生中隨機抽取一人,其分數(shù)小于的概率估計為。(2)根據(jù)題意,樣本中分數(shù)不小于的頻率為,分數(shù)在區(qū)間內(nèi)的人數(shù)為,所以總體中分數(shù)在區(qū)間內(nèi)的人數(shù)估計為?!军c睛】遇到頻率分布直方圖問題時需要注意:在頻率分布直方圖中,小矩形的高表示頻率/組距,而不是頻率;利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度二零二五年度解除勞動合同員工離職證明協(xié)議
- 2025年度室內(nèi)外裝修一體化勞務合同
- 施工項目合同(2篇)
- 感恩活動總結(匯編15篇)
- 感恩勵志成才的演講稿14篇
- 幼兒園中班玩具安全教育
- 愚人節(jié)策劃書15篇
- 食堂食材配送采購投標方案(技術標)
- 初級會計實務-《初級會計實務》模考試卷348
- 吉林省白城市通榆縣一中高三上學期第一次月考語文試題(含答案)
- 2025年公司品質(zhì)部部門工作計劃
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- CSC資助出國博士聯(lián)合培養(yǎng)研修計劃英文-research-plan
- 《環(huán)境管理學》教案
- 2025年蛇年年度營銷日歷營銷建議【2025營銷日歷】
- (一模)寧波市2024學年第一學期高考模擬考試 數(shù)學試卷(含答案)
- 父母贈與子女農(nóng)村土地協(xié)議書范本
- 集團母子公司協(xié)議書
- 中醫(yī)病證診斷療效標準
- 南安市第三次全國文物普查不可移動文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- ITSMS-D-038 問題記錄表范本
評論
0/150
提交評論