2023年福建龍巖一中數(shù)學高一第二學期期末綜合測試模擬試題含解析_第1頁
2023年福建龍巖一中數(shù)學高一第二學期期末綜合測試模擬試題含解析_第2頁
2023年福建龍巖一中數(shù)學高一第二學期期末綜合測試模擬試題含解析_第3頁
2023年福建龍巖一中數(shù)學高一第二學期期末綜合測試模擬試題含解析_第4頁
2023年福建龍巖一中數(shù)學高一第二學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的值等于()A. B. C. D.2.已知,則點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知等比數(shù)列中,,,則()A.10 B.7 C.4 D.124.若集合A={x|2≤x<4},?B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}5.“”是“函數(shù),有反函數(shù)”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.即非充分又非必要條件6.若是第四象限角,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.8.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為A. B. C. D.9.在等差數(shù)列中,若,則()A. B. C. D.10.若雙曲線的中心為原點,是雙曲線的焦點,過的直線與雙曲線相交于,兩點,且的中點為,則雙曲線的方程為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.12.設α,β是兩個不同的平面,l,m是兩條不同的直線,且l?α,m?β,下列四個命題正確的是________.①若l⊥β,則α⊥β;②若α⊥β,則l⊥m;③若l∥β,則α∥β;④若α∥β,則l∥m.13.函數(shù),的反函數(shù)為__________.14._________.15.設奇函數(shù)的定義域為R,且對任意實數(shù)滿足,若當∈[0,1]時,,則____.16.等差數(shù)列的前項和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前15項和.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列中,,.(1)令,求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的通項公式;(3)令,為數(shù)列的前項和,求.18.已知圓經(jīng)過,,三點.(1)求圓的標準方程;(2)若過點N的直線被圓截得的弦AB的長為,求直線的傾斜角.19.在平面直角坐標系中,O是坐標原點,向量若C是AB所在直線上一點,且,求C的坐標.若,當,求的值.20.(1)設,直接用任意角的三角比定義證明:.(2)給出兩個公式:①;②.請僅以上述兩個公式為已知條件證明:.21.數(shù)列中,且滿足.(1)求數(shù)列的通項公式;(2)設,求;⑶設,是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】=,選A.2、B【解析】∵,∴,,,∴,∴點在第二象限,故選B.點睛:本題主要考查了由三角函數(shù)值的符號判斷角的終邊位置,屬于基礎題;三角函數(shù)值符號記憶口訣記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.3、C【解析】

由等比數(shù)列性質可知,進而根據(jù)對數(shù)的運算法則計算即可【詳解】由題,因為等比數(shù)列,所以,則,故選:C【點睛】本題考查等比數(shù)列的性質的應用,考查對數(shù)的運算4、B【解析】

根據(jù)交集定義計算.【詳解】由題意A∩B={x|3<x<4}.故選B.【點睛】本題考查集合的交集運算,屬于基礎題.5、A【解析】

函數(shù),有反函數(shù),則函數(shù),上具有單調性,可得,即可判斷出結論.【詳解】函數(shù),有反函數(shù),則函數(shù),上具有單調性,.是的真子集,“”是“函數(shù),有反函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查了二次函數(shù)的單調性、反函數(shù)、充分條件與必要條件的判定方法,考查推理能力與計算能力,同時考查函數(shù)與方程思想、數(shù)形結合思想.6、C【解析】

利用象限角的表示即可求解.【詳解】由是第四象限角,則,所以,所以是第三象限角.故選:C【點睛】本題考查了象限角的表示,屬于基礎題.7、C【解析】

由題,連接,設其交平面于點易知平面,即(或其補角)為與平面所成的角,再利用等體積法求得AO的長度,即可求得的長度,可得結果.【詳解】設正方體的邊長為1,如圖,連接,設其交平面于點,則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補角)為與平面所成的角.在中,.故選C.【點睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關鍵,求高的長度會用到等體積法,屬于中檔題.8、C【解析】選取兩支彩筆的方法有種,含有紅色彩筆的選法為種,由古典概型公式,滿足題意的概率值為.本題選擇C選項.考點:古典概型名師點睛:對于古典概型問題主要把握基本事件的種數(shù)和符合要求的事件種數(shù),基本事件的種數(shù)要注意區(qū)別是排列問題還是組合問題,看抽取時是有、無順序,本題從這5支彩筆中任取2支不同顏色的彩筆,是組合問題,當然簡單問題建議采取列舉法更直觀一些.9、B【解析】

由等差數(shù)列的性質可得,則答案易求.【詳解】在等差數(shù)列中,因為,所以.所以.故選B.【點睛】本題考查等差數(shù)列性質的應用.在等差數(shù)列中,若,則.特別地,若,則.10、B【解析】由題可知,直線:,設,,得,又,解得,所以雙曲線方程為,故選B。二、填空題:本大題共6小題,每小題5分,共30分。11、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)12、①【解析】

由線面的平行垂直的判定和性質一一檢驗即可得解.【詳解】由平面與平面垂直的判定可知,①正確;②中,當α⊥β時,l,m可以垂直,也可以平行,也可以異面;③中,l∥β時,α,β可以相交;④中,α∥β時,l,m也可以異面.故答案為①.【點睛】本題主要考查了線面、面面的垂直和平行位置關系的判定和性質,屬于基礎題.13、【解析】

將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【詳解】因為,所以,則反函數(shù)為:且.【點睛】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.14、【解析】

根據(jù)誘導公式和特殊角的三角函數(shù)值可計算出結果.【詳解】由題意可得,原式.故答案為.【點睛】本題考查誘導公式和特殊三角函數(shù)值的計算,考查計算能力,屬于基礎題.15、【解析】

根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉變到給定區(qū)間計算函數(shù)值.【詳解】因為,所以,所以,又因為,所以,則,故,又因為是奇函數(shù),所以,則.【點睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達式,記住一個原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.16、(1),;(2)125.【解析】

(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項為正,后面為負,再計算數(shù)列的前15項和.【詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【點睛】本題考查了等差數(shù)列,等比數(shù)列,絕對值和,判斷數(shù)列的正負分界處是解題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(3)【解析】

(1)計算,得證數(shù)列為等比數(shù)列.(2)先求出的通項公式,再計算數(shù)列的通項公式.(3)計算,根據(jù)錯位相減法和分組求和法得到答案.【詳解】(1),,,故數(shù)列是以為首項,以為公比的等比數(shù)列.(2)由(1)知,由,得數(shù)列的通項公式為.(3)由(2)知,記.有.兩式作差得,得,則.【點睛】本題考查了數(shù)列的證明,數(shù)列通項公式,分組求和,錯位相減法,意在考查學生的計算能力.18、(1)(2)30°或90°.【解析】

(1)解法一:將圓的方程設為一般式,將題干三個點代入圓的方程,解出相應的參數(shù)值,即可得出圓的一般方程,再化為標準方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點坐標,即為圓心坐標,然后計算為圓的半徑,即可寫出圓的標準方程;(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;二是當直線的斜率存在時,設直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關于的方程,求出的值.結合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設圓的方程為,則∴即圓為,∴圓的標準方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標準方程為.(2)①當斜率不存在時,即直線到圓心的距離為1,也滿足題意,此時直線的傾斜角為90°,②當斜率存在時,設直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.【點睛】本題考查圓的方程以及直線截圓所得弦長的計算,在求直線與圓所得弦長的計算中,問題的核心要轉化為弦心距的計算,弦心距的計算主要有以下兩種方式:一是利用勾股定理計算,二是利用點到直線的距離公式計算圓心到直線的距離.19、(1);(2)或1【解析】

由向量共線的坐標運算得:設,可得,又因為,,即.由題意結合向量加減法與數(shù)量積的運算化簡得,所以,運算可得解.【詳解】,因為C是AB所在直線上一點,設,可得,又因為,所以,解得,所以,故答案為且,顯然,所以,,又所以,即,所以,所以即,解得:或,故答案為或1.【點睛】本題考查了向量共線的坐標運算及平面向量數(shù)量積的運算,屬于中檔題.20、(1)證明見解析(2)證明見解析【解析】

(1)直接利用任意角的三角函數(shù)的定義證得.(2)由已知條件利用誘導公式,證明.【詳解】解:(1)將角的頂點置于平面直角坐標系的原點,始邊與軸的正半軸重合,設角終邊一點(非原點),其坐標為.∵,∴,.(2)由于,將換成后,就有即,.【點睛】本題主要考查任意角的三角函數(shù)的定義、誘導公式,屬于基礎題.21、(1);(2)(3)7.【解析】

(1)由可得為等差數(shù)列,從而可得數(shù)列的通項公式;(2)先判斷時數(shù)列的各項為正數(shù),時數(shù)列各項為負數(shù),分兩種情況討論分別利用等差數(shù)列求和公式求解即可;(3)求得利用裂項相消法求得,由可得結果.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論