上海市西南模范中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第1頁
上海市西南模范中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第2頁
上海市西南模范中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第3頁
上海市西南模范中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第4頁
上海市西南模范中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.3 B.6 C.9 D.812.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.3.在數(shù)列中,,,則的值為()A.4950 B.4951 C. D.4.從2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中的2人都是女同學(xué)的概率為A. B. C. D.5.在鈍角中,角的對邊分別是,若,則的面積為A. B. C. D.6.函數(shù)圖象的一個(gè)對稱中心和一條對稱軸可以是()A., B.,C., D.,7.在中,內(nèi)角所對的邊分別是,若,則角的值為()A. B. C. D.8.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為()A. B. C. D.9.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.2210.已知β為銳角,角α的終邊過點(diǎn)(3,4),sin(α+β)=,則cosβ=()A. B. C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于函數(shù),下列命題:①若存在,有時(shí),成立;②在區(qū)間上是單調(diào)遞增;③函數(shù)的圖象關(guān)于點(diǎn)成中心對稱圖象;④將函數(shù)的圖象向左平移個(gè)單位后將與的圖象重合.其中正確的命題序號__________12.已知是等差數(shù)列,公差不為零,若,,成等比數(shù)列,且,則________13.某工廠生產(chǎn)三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為,現(xiàn)用分層抽樣方法抽出一個(gè)容量為的樣本,樣本中種型號產(chǎn)品有16件,那么此樣本的容量=14.?dāng)?shù)列中,,則____________.15.已知與的夾角為求=_____.16.四名學(xué)生按任意次序站成一排,則和都在邊上的概率是___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為.若.(1)求;(2)求的面積的最大值.18.已知為平面內(nèi)不共線的三點(diǎn),表示的面積(1)若求;(2)若,,,證明:;(3)若,,,其中,且坐標(biāo)原點(diǎn)恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.19.在銳角三角形中,內(nèi)角的對邊分別為且.(1)求角的大??;(2)若,,求△的面積.20.已知函數(shù)的圖象過點(diǎn),,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求實(shí)數(shù)的取值范圍.21.已知關(guān)于的不等式.(1)當(dāng)時(shí),解上述不等式.(2)當(dāng)時(shí),解上述關(guān)于的不等式

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

利用等比數(shù)列性質(zhì)可求得,將所求式子利用對數(shù)運(yùn)算法則和等比數(shù)列性質(zhì)可化為,代入求得結(jié)果.【詳解】且本題正確選項(xiàng):【點(diǎn)睛】本題考查等比數(shù)列性質(zhì)的應(yīng)用,關(guān)鍵是靈活利用等比中項(xiàng)的性質(zhì),屬于基礎(chǔ)題.2、D【解析】

利用三角形面積公式列出關(guān)系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,

∴,

解得:,

由余弦定理得:,

則.

故選D.【點(diǎn)睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.3、C【解析】

利用累加法求得,由此求得的表達(dá)式,進(jìn)而求得的值.【詳解】依題意,所以,所以,當(dāng)時(shí),上式也滿足.所以.故選:C【點(diǎn)睛】本小題主要考查累加法求數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.4、D【解析】分析:分別求出事件“2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù)”的總可能及事件“選中的2人都是女同學(xué)”的總可能,代入概率公式可求得概率.詳解:設(shè)2名男同學(xué)為,3名女同學(xué)為,從以上5名同學(xué)中任選2人總共有共10種可能,選中的2人都是女同學(xué)的情況共有共三種可能則選中的2人都是女同學(xué)的概率為,故選D.點(diǎn)睛:應(yīng)用古典概型求某事件的步驟:第一步,判斷本試驗(yàn)的結(jié)果是否為等可能事件,設(shè)出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個(gè)數(shù);第三步,利用公式求出事件的概率.5、A【解析】

根據(jù)已知求出b的值,再求三角形的面積.【詳解】在中,,由余弦定理得:,即,解得:或.∵是鈍角三角形,∴(此時(shí)為直角三角形舍去).∴的面積為.故選A.【點(diǎn)睛】本題主要考查余弦定理解三角形和三角形的面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、B【解析】

直接利用余弦型函數(shù)的性質(zhì)求出函數(shù)的對稱軸和對稱中心,即可得到答案.【詳解】由題意,函數(shù)的性質(zhì),令,解得,當(dāng)時(shí),,即函數(shù)的一條對稱軸的方程為,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對稱中心為,故選B.【點(diǎn)睛】本題主要考查了余弦型函數(shù)的性質(zhì)對稱軸和對稱中心的應(yīng)用,著重考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.7、C【解析】

利用正弦定理,求得,再利用余弦定理,求得,即可求解.【詳解】在,因?yàn)?,由正弦定理可化簡得,即,由余弦定理得,因?yàn)椋?,故選C.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要有意識地考慮用哪個(gè)定理更合適,要抓住能夠利用某個(gè)定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.8、C【解析】

試題分析:將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側(cè)面展開圖為長為,寬為1,所以所得幾何體的側(cè)面積為.故選C.9、C【解析】

利用正弦定理得到答案.【詳解】asin故答案選C【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.10、B【解析】

由題意利用任意角的三角函數(shù)的定義求得sinα和cosα,再利用同角三角函數(shù)的基本關(guān)系求得cos(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【詳解】β為銳角,角α的終邊過點(diǎn)(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β為鈍角,∴cos(α+β),則cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα??,故選B.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】

根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時(shí),成立;正確,對于②、在區(qū)間上是單調(diào)遞減;因此錯(cuò)誤,對于③、,函數(shù)的圖象關(guān)于點(diǎn)成中心對稱圖象,成立.對于④、將函數(shù)的圖象向左平移個(gè)單位后得到,與的圖象重合錯(cuò)誤,故答案為①③考點(diǎn):命題的真假點(diǎn)評:主要是考查了三角函數(shù)的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題.12、【解析】

根據(jù)題設(shè)條件,得到方程組,求得,即可得到答案.【詳解】由題意,數(shù)列是等差數(shù)列,滿足,,成等比數(shù)列,且,可得,即且,解得,所以.故答案為:.【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,以及等比中項(xiàng)的應(yīng)用,其中解答中熟練利用等差數(shù)列的通項(xiàng)公式和等比中項(xiàng)公式,列出方程組求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、1.【解析】

解:A種型號產(chǎn)品所占的比例為2/(2+3+5)=2/10,16÷2/10=1,故樣本容量n=1,14、1【解析】

利用極限運(yùn)算法則求解即可【詳解】故答案為:1【點(diǎn)睛】本題考查數(shù)列的極限,是基礎(chǔ)題15、【解析】

由題意可得:,結(jié)合向量的運(yùn)算法則和向量模的計(jì)算公式可得的值.【詳解】由題意可得:,則:.【點(diǎn)睛】本題主要考查向量模的求解,向量的運(yùn)算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、【解析】

寫出四名學(xué)生站成一排的所有可能情況,得出和都在邊上的情況即可求得概率.【詳解】四名學(xué)生按任意次序站成一排,所有可能的情況為:,,,,共24種情況,其中和都在邊上共有,4種情況,所以和都在邊上的概率是.故答案為:【點(diǎn)睛】此題考查古典概型,根據(jù)古典概型求概率,關(guān)鍵在于準(zhǔn)確求出基本事件總數(shù)和某一事件包含的基本事件個(gè)數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)用正弦定理將式子化為,進(jìn)行整理化簡可得的值,即得角B;(2)由余弦定理可得關(guān)于的等式,再利用基本不等式和三角形面積公式可得面積最大值。【詳解】(1)由題得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,則的面積的最大值為.【點(diǎn)睛】本題考查用正弦定理求三角形內(nèi)角,由余弦定理和基本不等式求三角形面積最大值,是基礎(chǔ)題型。18、(1);(2)詳見解析;(3)是定值,值為,理由見解析.【解析】

(1)已知三點(diǎn)坐標(biāo),則可以求出三邊長度及對應(yīng)向量,由向量數(shù)量積公式可以求出夾角余弦值,從而算出正弦值,利用面積公式完成作答;(2)和(1)的方法一樣,唯獨(dú)不同在于(1)是具體值,而(2)中是參數(shù),我們可以把參數(shù)當(dāng)做整體(視為已知)能處理;(3)由恰好為的正心可以獲取,而可以借助(2)的公式直接運(yùn)用,本題也就完成作答.【詳解】(1)因?yàn)?,所以,,所以因?yàn)?,所以,所以?)因?yàn)?,所以所以因?yàn)樗运运?;?)因?yàn)闉榈闹匦模杂?1)可知又因?yàn)闉榈闹匦?,所以,平方相加?,即,所以所以,所以是定值,值為【點(diǎn)睛】已知三角形三點(diǎn),去探究三角形面積問題,通過向量數(shù)量積為載體,算出相對應(yīng)邊所在向量的模長、夾角余弦值,進(jìn)一步算出正弦值,從而算出面積,這三問存在層層遞進(jìn)的過程,從特殊到一般慢慢設(shè)問,非常好的一個(gè)探究性習(xí)題.19、(1);(2).【解析】

(1)利用正弦定理及,便可求出,得到的大小;(2)利用(1)中所求的大小,結(jié)合余弦定理求出的值,最后再用三角形面積公式求出值.【詳解】(1)由及正弦定理,得.因?yàn)闉殇J角,所以.(2)由余弦定理,得,又,所以,所以.考點(diǎn):正余弦定理的綜合應(yīng)用及面積公式.20、(1);(2);(3)【解析】

(1)根據(jù),,兩點(diǎn)可確定,的值;(2)由(1)知,,求出,的值,然后根據(jù),求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【詳解】(1)由得:,即,由知,,,由得:,即,即,由得,,所以;(2)由得:,即,由得:,(3)由得:,當(dāng)時(shí),,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),三角函數(shù)值的求法,以及在閉區(qū)間上的三角函數(shù)的值域問題的求法,意在考查學(xué)生整體思想以及轉(zhuǎn)化與化歸思想的應(yīng)用能力.21、(1).(2)當(dāng)時(shí),解集為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論