版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式對任意,恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.已知點,點是圓上任意一點,則面積的最大值是()A. B. C. D.3.設(shè)變量想x、y滿足約束條件為則目標函數(shù)的最大值為()A.0 B.-3 C.18 D.214.已知各項均不為零的數(shù)列,定義向量,,.下列命題中真命題是()A.若對任意的,都有成立,則數(shù)列是等差數(shù)列B.若對任意的,都有成立,則數(shù)列是等比數(shù)列C.若對任意的,都有成立,則數(shù)列是等差數(shù)列D.若對任意的,都有成立,則數(shù)列是等比數(shù)列5.設(shè)是平面內(nèi)的一組基底,則下面四組向量中,能作為基底的是()A.與 B.與C.與 D.與6.在等比數(shù)列中,若,則的值為()A. B. C. D.7.若,則的最小值是()A. B. C. D.8.在中,若,,,則角的大小為()A.30° B.45°或135° C.60° D.135°9.若圓上有且僅有兩個點到直線的距離等于,則的取值范圍是()A. B. C. D.10.得到函數(shù)的圖象,只需將的圖象()A.向左移動 B.向右移動 C.向左移動 D.向右移動二、填空題:本大題共6小題,每小題5分,共30分。11.終邊經(jīng)過點,則_____________12.一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為.13.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.14.在半徑為的球中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當該正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差是__________.15.如圖記錄了甲乙兩名籃球運動員練習投籃時,進行的5組100次投籃的命中數(shù),若這兩組數(shù)據(jù)的中位數(shù)相等,平均數(shù)也相等,則______,_________.16.如圖,在中,已知點在邊上,,,則的長為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知兩點,.(1)求直線AB的方程;(2)直線l經(jīng)過,且傾斜角為,求直線l與AB的交點坐標.18.如圖,矩形中,平面,,為上的點,且平面,.(Ⅰ)求證:平面;(Ⅱ)求三棱錐的體積.19.已知的三個內(nèi)角、、的對邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.20.在中,角所對的邊分別為,且.(1)求;(2)若,求的周長.21.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】∵不等式對任意,恒成立,∴,∵,當且僅當,即時取等號,∴,∴,∴,∴實數(shù)的取值范圍是,故選B.2、B【解析】
求出直線的方程,計算出圓心到直線的距離,可知的最大高度為,并計算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標為,半徑長為,圓心到直線的距離為,所以,點到直線的距離的最大值為,因此,面積的最大值為,故選B.【點睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當直線與圓相離時,若圓的半徑為,圓心到直線的距離為,則圓上一點到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.3、C【解析】
畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最大值,且最大值為.故選C.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最大值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫圖可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應(yīng)的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.4、A【解析】
根據(jù)向量平行的坐標表示,得到,利用累乘法,求得,從而可作出判定,得到答案.【詳解】由題意知,向量,,,當時,可得,即,所以,所以數(shù)列表示首項為,公差為的等差數(shù)列.當,可得,即,所以,所以數(shù)列既不是等差數(shù)列,也不是等比數(shù)列.故選A.【點睛】本題主要考查了向量的平行關(guān)系的坐標表示,等差數(shù)列的定義,以及“累乘法”求解通項公式的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、C【解析】
利用向量可以作為基底的條件是,兩個向量不共線,由此分別判定選項中的兩個向量是否共線即可.【詳解】由是平面內(nèi)的一組基底,所以和不共線,對應(yīng)選項A:,所以這2個向量共線,不能作為基底;對應(yīng)選項B:,所以這2個向量共線,不能作為基底;對應(yīng)選項D:,所以這2個向量共線,不能作為基底;對應(yīng)選項C:與不共線,能作為基底.故選:C.【點睛】本題主要考查基底的定義,判斷2個向量是否共線的方法,屬于基礎(chǔ)題.6、B【解析】
根據(jù)等比數(shù)列的性質(zhì):若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質(zhì),此題也可用通項公式求解.7、A【解析】,則,當且僅當取等號.所以選項是正確的.點睛:本題主要考查基本不等式,其難點主要在于利用三角形的一邊及這條邊上的高表示內(nèi)接正方形的邊長.在用基本不等式求最值時,應(yīng)具備三個條件:一正二定三相等.①一正:關(guān)系式中,各項均為正數(shù);②二定:關(guān)系式中,含變量的各項的和或積必須有一個為定值;③三相等:含變量的各項均相等,取得最值.8、B【解析】
利用正弦定理得到答案.【詳解】在中正弦定理:或故答案選B【點睛】本題考查了正弦定理,屬于簡單題.9、B【解析】
先求出圓心到直線的距離,然后結(jié)合圖象,即可得到本題答案.【詳解】由題意可得,圓心到直線的距離為,故由圖可知,當時,圓上有且僅有一個點到直線的距離等于;當時,圓上有且僅有三個點到直線的距離等于;當則的取值范圍為時,圓上有且僅有兩個點到直線的距離等于.故選:B【點睛】本題主要考查直線與圓的綜合問題,數(shù)學結(jié)合是解決本題的關(guān)鍵.10、B【解析】
直接利用三角函數(shù)圖象的平移變換法則,對選項中的變換逐一判斷即可.【詳解】函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,對.函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,錯,故選B.【點睛】本題考查了三角函數(shù)的圖象,重點考查學生對三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)正弦值的定義,求得正弦值.【詳解】依題意.故答案為:【點睛】本小題主要考查根據(jù)角的終邊上一點的坐標求正弦值,屬于基礎(chǔ)題.12、【解析】
設(shè)球的半徑為r,則,,,所以,故答案為.考點:圓柱,圓錐,球的體積公式.點評:圓柱,圓錐,球的體積公式分別為.13、【解析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.14、【解析】
根據(jù)正四棱柱外接球半徑的求解方法可得到正四棱柱底面邊長和高的關(guān)系,利用基本不等式得到,得到側(cè)面積最大值為;根據(jù)球的表面積公式求得球的表面積,作差得到結(jié)果.【詳解】設(shè)球內(nèi)接正四棱柱的底面邊長為,高為則球的半徑:正四棱柱的側(cè)面積:球的表面積:當正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差為:本題正確結(jié)果:【點睛】本題考查多面體的外接球的相關(guān)問題的求解,關(guān)鍵是能夠根據(jù)外接球半徑構(gòu)造出關(guān)于正棱柱底面邊長和高的關(guān)系式,利用基本不等式求得最值;其中還涉及到球的表面積公式的應(yīng)用.15、3.5.【解析】
根據(jù)莖葉圖,將兩組數(shù)據(jù)按照從小到大順序排列,由中位數(shù)和平均數(shù)相等,即可解得的值.【詳解】甲乙兩組數(shù)據(jù)的中位數(shù)相等,平均數(shù)也相等對于甲組將數(shù)據(jù)按照從小到大順序排列后可知,中位數(shù)為65.所以乙組中位數(shù)也為65.根據(jù)乙組數(shù)據(jù)可得則由兩組的平均數(shù)相等,可知兩組的總數(shù)也相等,即解得故答案為:;【點睛】本題考查了莖葉圖的簡單應(yīng)用,由莖葉圖求中位數(shù)和平均數(shù),屬于基礎(chǔ)題.16、【解析】
由誘導公式可知,在中用余弦定理可得BD的長?!驹斀狻坑深}得,,在中,可得,又,代入得,解得.故答案為:【點睛】本題考查余弦定理和誘導公式,是基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)、兩點的坐標,得到斜率,再由點斜式得到直線方程;(2)根據(jù)的傾斜角和過點,得到的方程,再與直線聯(lián)立,得到交點坐標.【詳解】(1)因為點,,所以,所以方程為,整理得;(2)因為直線l經(jīng)過,且傾斜角為,所以直線的斜率為,所以的方程為,整理得,所以直線與直線的交點為,解得,所以交點坐標為.【點睛】本題考查點斜式求直線方程,求直線的交點坐標,屬于簡單題.18、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)先證明,再證明平面;(Ⅱ)由等積法可得即可求解.【詳解】(Ⅰ)因為是中點,又因為平面,所以,由已知,所以是中點,所以,因為平面,平面,所以平面.(Ⅱ)因為平面,,所以平面,則,又因為平面,所以,則平面,由可得平面,因為,此時,,所以.【點睛】本題主要考查線面平行的判定及利用等積法求三棱錐的體積問題,屬常規(guī)考題.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【點睛】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.20、(1);(2)【解析】
分析:(1)利用正弦定理,求得,即可求出A,根據(jù)已知條件算出,再由大邊對大角,即可求出C;(2)易得,根據(jù)兩角和正弦公式求出,再由正弦定理求出和,即可得到答案.詳解:解:(1)由正弦定理得,又,所以,從而,因為,所以.又因為,,所以.(2)由(1)得由正弦定理得,可得,.所以的周長為.點睛:本題主要考查正弦定理在解三角形中的應(yīng)用.正弦定理是解三角形的有力工具,其常見用法有以下四種:(1)已知兩邊和一邊的對角,求另一邊的對角(一定要注意討論鈍角與銳角);(2)已知兩角與一個角的對邊,求另一個角的對邊;(3)證明化簡過程中邊角互化;(4)求三角形外接圓半徑.21、(1),;(2)最大值為,最小值為【解析】
利用二倍角公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新能源公交車運營協(xié)議
- 2024年離婚協(xié)議書反悔案例分析
- 2024年物流裝卸服務(wù)協(xié)議
- 不銹鋼欄桿包工料合同范本
- 中國勞動關(guān)系學院《老年健康照護和促進》2023-2024學年第一學期期末試卷
- 專業(yè)化噴泉維修服務(wù)協(xié)議模板下載版B版
- 2024年財務(wù)戰(zhàn)略咨詢合作合同版B版
- 乙炔知識培訓課件
- 酒店行業(yè)保安工作總結(jié)
- 汽車行業(yè)促銷策略總結(jié)
- 硫磺安全技術(shù)說明書MSDS
- 職中英語期末考試質(zhì)量分析
- 過盈配合壓裝力計算
- 中國的世界遺產(chǎn)智慧樹知到答案章節(jié)測試2023年遼寧科技大學
- 先天性肌性斜頸的康復
- GB/T 37518-2019代理報關(guān)服務(wù)規(guī)范
- GB/T 34370.1-2017游樂設(shè)施無損檢測第1部分:總則
- GB/T 15924-1995錫礦石化學分析方法碘量法測定錫量
- GB/T 13914-2013沖壓件尺寸公差
- 貝利尤單抗Belimumab詳細說明書與重點
- BB/T 0045-2021紙漿模塑制品工業(yè)品包裝
評論
0/150
提交評論