版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在等差數(shù)列{an}中,已知a1=2A.50 B.52 C.54 D.562.已知,則向量與向量的夾角是()A. B. C. D.3.等差數(shù)列an的公差d<0,且a12=a212,則數(shù)列aA.9 B.10 C.10和11 D.11和124.設(shè)向量滿足,且,則向量在向量方向上的投影為A.1 B. C. D.5.已知等差數(shù)列中,,則()A. B.C. D.6.某校有高一學(xué)生人,高二學(xué)生人,高三學(xué)生人,現(xiàn)教育局督導(dǎo)組欲用分層抽樣的方法抽取名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則下列判斷正確的是()A.高一學(xué)生被抽到的可能性最大 B.高二學(xué)生被抽到的可能性最大C.高三學(xué)生被抽到的可能性最大 D.每位學(xué)生被抽到的可能性相等7.在正方體中,當(dāng)點(diǎn)在線段(與,不重合)上運(yùn)動(dòng)時(shí),總有:①;②平面平面;③平面;④.以上四個(gè)推斷中正確的是()A.①② B.①④ C.②④ D.③④8.當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.9.設(shè),若不等式恒成立,則實(shí)數(shù)a的取值范圍是()A. B. C. D.10.已知平面平面,直線平面,直線平面,,在下列說(shuō)法中,①若,則;②若,則;③若,則.正確結(jié)論的序號(hào)為()A.①②③ B.①② C.①③ D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.在直角梯形.中,,分別為的中點(diǎn),以為圓心,為半徑的圓交于,點(diǎn)在上運(yùn)動(dòng)(如圖).若,其中,則的最大值是________.12.已知正實(shí)數(shù)a,b滿足2a+b=1,則1a13.設(shè)為虛數(shù)單位,復(fù)數(shù)的模為_(kāi)_____.14.已知向量(1,2),(x,4),且∥,則_____.15.設(shè)是等差數(shù)列的前項(xiàng)和,若,,則公差(___).16.在等比數(shù)列中,若,則等于__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量,的夾角為,且,.(1)求;(2)求.18.己知角的終邊經(jīng)過(guò)點(diǎn).求的值;求的值.19.已知,,,均為銳角,且.(1)求的值;(2)若,求的值.20.如圖,四棱錐中,底面為矩形,面,為的中點(diǎn).(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.21.某校團(tuán)委會(huì)組織某班以小組為單位利用周末時(shí)間進(jìn)行一次社會(huì)實(shí)踐活動(dòng),每個(gè)小組有5名同學(xué),在活動(dòng)結(jié)束后,學(xué)校團(tuán)委會(huì)對(duì)該班的所有同學(xué)進(jìn)行了測(cè)試,該班的A,B兩個(gè)小組所有同學(xué)得分(百分制)的莖葉圖如圖所示,其中B組一同學(xué)的分?jǐn)?shù)已被污損,但知道B組學(xué)生的平均分比A組同學(xué)的平均分高一分.(1)若在B組學(xué)生中隨機(jī)挑選1人,求其得分超過(guò)86分的概率;(2)現(xiàn)從A、B兩組學(xué)生中分別隨機(jī)抽取1名同學(xué),設(shè)其分?jǐn)?shù)分別為m、n,求的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
利用等差數(shù)列通項(xiàng)公式求得基本量d,根據(jù)等差數(shù)列性質(zhì)可得a4【詳解】設(shè)等差數(shù)列an公差為則a2+∴本題正確選項(xiàng):C【點(diǎn)睛】本題考查等差數(shù)列基本量的求解問(wèn)題,關(guān)鍵是能夠根據(jù)等差數(shù)列通項(xiàng)公式構(gòu)造方程求得公差,屬于基礎(chǔ)題.2、C【解析】試題分析:根據(jù)已知可得:,所以,所以?shī)A角為,故選擇C考點(diǎn):向量的運(yùn)算3、C【解析】
利用等差數(shù)列性質(zhì)得到a11=0,再判斷S10【詳解】等差數(shù)列an的公差d<0,且a根據(jù)正負(fù)關(guān)系:S10或S故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),Sn的最大值,將Sn的最大值轉(zhuǎn)化為4、D【解析】
先由題中條件,求出向量的數(shù)量積,再由向量數(shù)量積的幾何意義,即可求出投影.【詳解】因?yàn)?,,所以,所以,故向量在向量方向上的投影?故選D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積,熟記平面向量數(shù)量積的幾何意義即可,屬于常考題型.5、C【解析】
,.故選C.6、D【解析】
根據(jù)分層抽樣是等可能的選出正確答案.【詳解】由于分層抽樣是等可能的,所以每位學(xué)生被抽到的可能性相等,故選D.【點(diǎn)睛】本小題主要考查隨機(jī)抽樣的公平性,考查分層抽樣的知識(shí),屬于基礎(chǔ)題.7、D【解析】
每個(gè)結(jié)論可以通過(guò)是否能證偽排除即可.【詳解】①因?yàn)椋c相交,所以①錯(cuò).②很明顯不對(duì),只有當(dāng)E在中點(diǎn)時(shí)才滿足條件.③易得平面平面,而AE平面,所以平面;④因?yàn)槠矫妫鳤E平面,所以.故選D【點(diǎn)睛】此題考查空間圖像位置關(guān)系,一般通過(guò)特殊位置排除即可,屬于較易題目.8、A【解析】
當(dāng)x>0時(shí),不等式x2﹣mx+9>0恒成立?m<(x)min,利用基本不等式可求得(x)min=6,從而可得實(shí)數(shù)m的取值范圍.【詳解】當(dāng)x>0時(shí),不等式x2﹣mx+9>0恒成立?當(dāng)x>0時(shí),不等式m<x恒成立?m<(x)min,當(dāng)x>0時(shí),x26(當(dāng)且僅當(dāng)x=3時(shí)取“=”),因此(x)min=6,所以m<6,故選A.【點(diǎn)睛】本題考查函數(shù)恒成立問(wèn)題,分離參數(shù)m是關(guān)鍵,考查等價(jià)轉(zhuǎn)化思想與基本不等式的應(yīng)用,屬于中檔題.9、D【解析】
由題意可得恒成立,討論,,運(yùn)用基本不等式,可得最值,進(jìn)而得到所求范圍.【詳解】恒成立,即為恒成立,當(dāng)時(shí),可得的最小值,由,當(dāng)且僅當(dāng)取得最小值8,即有,則;當(dāng)時(shí),可得的最大值,由,當(dāng)且僅當(dāng)取得最大值,即有,則,綜上可得.故選.【點(diǎn)睛】本題主要考查不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離和分類討論思想,以及基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化思想、分類討論思想和運(yùn)算能力.10、D【解析】
由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯(cuò)誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【點(diǎn)睛】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
建立直角坐標(biāo)系,設(shè),根據(jù),表示出,結(jié)合三角函數(shù)相關(guān)知識(shí)即可求得最大值.【詳解】建立如圖所示的平面直角坐標(biāo)系:,分別為的中點(diǎn),,以為圓心,為半徑的圓交于,點(diǎn)在上運(yùn)動(dòng),設(shè),,即,,所以,兩式相加:,即,要取得最大值,即當(dāng)時(shí),故答案為:【點(diǎn)睛】此題考查平面向量線性運(yùn)算,處理平面幾何相關(guān)問(wèn)題,涉及三角換元,轉(zhuǎn)化為求解三角函數(shù)的最值問(wèn)題.12、9【解析】
利用“乘1法”和基本不等式即可得出.【詳解】解:∵正實(shí)數(shù)a,b滿足2a+b=1,∴1a+12b=(2a+b∴1a+故答案為:9【點(diǎn)睛】本題考查了“乘1法”和基本不等式的應(yīng)用,屬于基礎(chǔ)題.13、5【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),然后代入復(fù)數(shù)模的公式,即可求得答案.【詳解】由題意,復(fù)數(shù),則復(fù)數(shù)的模為.故答案為5【點(diǎn)睛】本題主要考查了復(fù)數(shù)的乘法運(yùn)算,以及復(fù)數(shù)模的計(jì)算,其中熟記復(fù)數(shù)的運(yùn)算法則,和復(fù)數(shù)模的公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、.【解析】
根據(jù)求得,從而可得,再求得的坐標(biāo),利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點(diǎn)睛】本題主要考查了向量平行關(guān)系的應(yīng)用,以及向量的減法和向量的模的計(jì)算,其中解答中熟記向量的平行關(guān)系,以及向量的坐標(biāo)運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)兩個(gè)和的關(guān)系得到公差條件,解得結(jié)果.【詳解】由題意可知,,即,又,兩式相減得,.【點(diǎn)睛】本題考查等差數(shù)列和項(xiàng)的性質(zhì),考查基本分析求解能力,屬基礎(chǔ)題.16、【解析】
由等比數(shù)列的性質(zhì)可得,,代入式子中運(yùn)算即可.【詳解】解:在等比數(shù)列中,若故答案為:【點(diǎn)睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì)的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)1;(2)【解析】
(1)利用向量數(shù)量積的定義求解;(2)先求模長(zhǎng)的平方,再進(jìn)行開(kāi)方可得.【詳解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的定義及向量模長(zhǎng)的求解,一般地,求解向量模長(zhǎng)時(shí),先把模長(zhǎng)平方,化為數(shù)量積運(yùn)算進(jìn)行求解.18、(1)(2)【解析】
(1)直接利用三角函數(shù)的定義的應(yīng)用求出結(jié)果.(2)利用同角三角函數(shù)關(guān)系式的變換和誘導(dǎo)公式的應(yīng)用求出結(jié)果.【詳解】(1)由題意,由角的終邊經(jīng)過(guò)點(diǎn),根據(jù)三角函數(shù)的定義,可得.由知,則.【點(diǎn)睛】本題主要考查了三角函數(shù)關(guān)系式的恒等變換,同角三角函數(shù)的關(guān)系式的變換,誘導(dǎo)公式的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.19、(1);(2)【解析】
(1)計(jì)算表達(dá)出,再根據(jù),兩邊平方求化簡(jiǎn)即可求得.(2)根據(jù),再利用余弦的差角公式展開(kāi)后分別計(jì)算求解即可.【詳解】(1)由題意,得,,,,.(2),,均為銳角,仍為銳角,,,.【點(diǎn)睛】本題主要考查了根據(jù)向量的數(shù)量積列出關(guān)于三角函數(shù)的等式,再利用三角函數(shù)中的和差角以及湊角求解的方法.屬于中檔題.20、(1)證明見(jiàn)解析(2)到平面的距離為【解析】
試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點(diǎn)O,連結(jié)EO.因?yàn)锳BCD為矩形,所以O(shè)為BD的中點(diǎn).又E為PD的中點(diǎn),所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到平面的距離為d,又因?yàn)镻B=所以又因?yàn)?或),,所以考點(diǎn):線面平行的判定及點(diǎn)到面的距離21、(1)(2)【解析】
(1)求出A組學(xué)生的平均分可得B組學(xué)生的平均分,設(shè)被污損的分?jǐn)?shù)為X,列方程得X,從而得到B組學(xué)生的分?jǐn)?shù),其中有3人分?jǐn)?shù)超過(guò)86分,由此能求出B組學(xué)生中隨機(jī)挑選1人,其得分超過(guò)86分概率.(2)利用列舉法寫出在A、B兩組學(xué)生中隨機(jī)抽取1名同學(xué),其分?jǐn)?shù)組成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【詳解】(1)A組學(xué)生的平均分為,所以B組學(xué)生的平均分為86分設(shè)被污損的分?jǐn)?shù)為,則,解得所以B組學(xué)生的分?jǐn)?shù)為91、93、83、88、75,其中有3人分?jǐn)?shù)超過(guò)86分在B組學(xué)生中隨機(jī)挑選1人,其得分超過(guò)86分概率為.(2)A組學(xué)生的分?jǐn)?shù)分別是94、80、86、88、77,B組學(xué)生的分?jǐn)?shù)為91、93、83、88、75,在A、B兩組學(xué)生中隨機(jī)抽取1名同學(xué),其分?jǐn)?shù)組成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化行業(yè)工程師崗位描述
- 數(shù)字鐘verilog課程設(shè)計(jì)
- 幼兒園秋冬戶外課程設(shè)計(jì)
- 投郵件正文的個(gè)人英文簡(jiǎn)歷范文
- 敬老月宣傳的標(biāo)語(yǔ)(95句)
- 文明好少年事跡材料(8篇)
- 煤化學(xué)課程設(shè)計(jì)
- 2024年度子女監(jiān)護(hù)權(quán)變更及共同財(cái)產(chǎn)分割協(xié)議3篇
- 2025年山東淄博市“服務(wù)基層人才專項(xiàng)”招募(2075人)管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東棗莊科技職業(yè)學(xué)院招聘?jìng)浒钢乒ぷ魅藛T12人管理單位筆試遴選500模擬題附帶答案詳解
- 航空開(kāi)傘器機(jī)械大報(bào)告
- 關(guān)于人工費(fèi)結(jié)清證明
- 全國(guó)國(guó)防教育示范學(xué)校形象標(biāo)識(shí)、金屬牌匾樣式
- 《網(wǎng)吧證件轉(zhuǎn)讓協(xié)議推薦》
- 重慶氣體行業(yè)協(xié)會(huì)
- 公司走賬合同范本
- 獲獎(jiǎng)一等獎(jiǎng)QC課題PPT課件
- 企業(yè)中高層人員安全管理培訓(xùn)--責(zé)任、案例、管理重點(diǎn)
- 小學(xué)五年級(jí)思政課教案三篇
- 高強(qiáng)螺栓施工記錄
- 一億以內(nèi)的質(zhì)數(shù)表(一)
評(píng)論
0/150
提交評(píng)論