河南省鄭州市新鄭第一高級中學2022年高三數(shù)學文期末試題含解析_第1頁
河南省鄭州市新鄭第一高級中學2022年高三數(shù)學文期末試題含解析_第2頁
河南省鄭州市新鄭第一高級中學2022年高三數(shù)學文期末試題含解析_第3頁
河南省鄭州市新鄭第一高級中學2022年高三數(shù)學文期末試題含解析_第4頁
河南省鄭州市新鄭第一高級中學2022年高三數(shù)學文期末試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省鄭州市新鄭第一高級中學2022年高三數(shù)學文期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.“”是“函數(shù)有零點”的

()A.充要條件;B.必要非充分條件;C.充分非必要條件;D.既不充分也不必要條件;參考答案:C2.如圖,設是圖中邊長為4的正方形區(qū)域,是內(nèi)函數(shù)圖象下方的點構成的區(qū)域.在內(nèi)隨機取一點,則該點在中的概率為

A.

B.

C.

D.參考答案:C3.函數(shù)(e為自然對數(shù)的底數(shù),,a為常數(shù))有三個不同零點,則a的取值范圍是A.

B.(-∞,0)

C.

D.(0,+∞)參考答案:A4.如果執(zhí)行右面的算法語句輸出結果是2,則輸入的值是(

)科A.0

B.0或2

C.2

D.或2參考答案:B略5.在右程序框圖中,當N(n>1)時,函數(shù)表示函數(shù)的導函數(shù).若輸入函數(shù),則輸出的函數(shù)可化為A.

B.C.

D.參考答案:C6.在區(qū)間上隨機取一個數(shù)x,的值介于0到之間的概率為

A.

B.

C.

D.參考答案:C7.設a、b、c為非零實數(shù),且,則(

)A. B. C. D.參考答案:C【分析】取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:C.【點睛】本題考查了不等式性質(zhì),意在考查學生對于不等式性質(zhì)的靈活運用.8.若函數(shù)f(x)=2ex﹣ax2+(a﹣2e)x有三個不同的零點,則實數(shù)a的取值范圍是()A.(e,+∞) B.(0,e) C.[1,e) D.(0,+∞)參考答案:D【考點】組合幾何體的面積、體積問題;函數(shù)零點的判定定理;根的存在性及根的個數(shù)判斷.【分析】由題意可得f(1)=0,則方程轉化為a=有兩個不同的實數(shù)根.設g(x)=,求出導數(shù),判斷函數(shù)值的符號和對x討論,x<0,0<x<1,x>1三種情況,判斷單調(diào)性,畫出圖象,即可得到所求a的范圍.【解答】解:函數(shù)f(x)=2ex﹣ax2+(a﹣2e)x,可得f(1)=2e﹣a+a﹣2e=0,即有x=1為f(x)的一個零點,當x≠1時,由2ex﹣ax2+(a﹣2e)x=0,得a=有兩個不同的實數(shù)根.設g(x)=,由y=ex﹣ex的導數(shù)為y′=ex﹣e,當x>1時,y′>0,y=ex﹣ex遞增;當x<1時,y′<0,y=ex﹣ex遞減.即有x=1處,y=ex﹣ex取得最小值,且為0,即ex﹣ex≥0,當x<0時,x2﹣x>0,g(x)>0;當0<x<1時,g(x)<0;當x>1時,g(x)>0.由g′(x)=,可設h(x)=x2ex﹣3xex+ex+ex2,顯然當x<0時,h(x)>0,即g′(x)>0,g(x)在(﹣∞,0)遞增;又h(x)=xex(x+﹣3+),再令m(x)=x+﹣3+,m′(x)=1﹣+=(x﹣1)(),即0<x<1時,m(x)遞減;x>1時,m(x)遞增.則m(x)>m(1)=0,h(x)>0在(0,1)∪(1,+∞)恒成立,即有g′(x)>0在(0,1)∪(1,+∞)恒成立,則g(x)在(0,1),(1,+∞)遞增,畫出函數(shù)y=g(x)的圖象,可得a>0時,函數(shù)y=g(x)的圖象和直線y=a有兩個交點.綜上可得,a>0時,f(x)=ex﹣ax2+(a﹣e)x有三個不同的零點.故選:D.9.如圖所示,一質(zhì)點在平面上沿曲線運動,速度大小不變,其在軸上的投影點的運動速度的圖象大致為(

)參考答案:B10.已知-1,a,b,-4成等差數(shù)列,-1,c,d,e,-4成等比數(shù)列,則=()A.

B.-

C.

D.或-參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.某幾何體的三視圖如右,其中正視圖與側視圖上半部分為半圓,則該幾何體的表面積為

.參考答案:12.已知“|x-a|<1”是“x2-6x<0”的充分不必要條件,則實數(shù)a的取值范圍為.參考答案:(1,5)13.設任意實數(shù)x0>x1>x2>x3>0,要使log1993+log1993+log1993≥k·log1993恒成立,則k的最大值是_______.參考答案:9解:顯然>1,從而log1993>0.即++≥.就是[(lgx0-lgx1)+(lgx1-lgx2)+(lgx2-lgx3)](++)≥k.其中l(wèi)gx0-lgx1>0,lgx1-lgx2>0,lgx2-lgx3>0,由Cauchy不等式,知k≤9.即k的最大值為9.14.(幾何證明選講選做題)在平行四邊形中,點在邊上,且,與交于點,若的面積為,則的面積為.w。w-w*k&參考答案:略15.三人互相傳球,每人每次只能傳一下,由甲開始傳,則經(jīng)過兩次傳球后,球被傳回給甲的概率是_____________。參考答案:

16.(5分)在各項為正數(shù)的等比數(shù)列{an}中,若a6=a5+2a4,則公比q=

.參考答案:2【考點】:等比數(shù)列的通項公式.等差數(shù)列與等比數(shù)列.【分析】:根據(jù)等比數(shù)列的通項公式化簡a6=a5+2a4,列出關于q的方程,由各項為正數(shù)求出q的值.解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各項為正數(shù),則q=2,故答案為:2.【點評】:本題考查等比數(shù)列的通項公式,注意公比的符號,屬于基礎題.17.若(a+x)(1+x)4的展開式中,x的奇數(shù)次冪的系數(shù)和為32,則展開式中x3的系數(shù)為參考答案:18設f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,

令x=1,則a0+a1+a2+…+a5=f(1)=16(a+1),①

令x=-1,則a0-a1+a2-…-a5=f(-1)=0.②

①-②得,2(a1+a3+a5)=16(a+1),

所以2×32=16(a+1),

所以a=3.

當(3+x)中取3,則(1+x)4取x,x,x,1即x3的系數(shù)為當(3+x)中取x,則(1+x)4取x,x,1,1即x3的系數(shù)為∴展開式中x3的系數(shù)為18三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.在直角坐標系xOy中,圓C的參數(shù)方程為(θ為參數(shù)).(1)以原點為極點、x軸正半軸為極軸建立極坐標系,求圓C的極坐標方程;(2)已知A(﹣2,0),B(0,2),圓C上任意一點M(x,y),求△ABM面積的最大值.參考答案:【考點】簡單曲線的極坐標方程;參數(shù)方程化成普通方程.【分析】(1)圓C的參數(shù)方程為,通過三角函數(shù)的平方關系式消去參數(shù)θ,得到普通方程.通過x=ρcosθ,y=ρsinθ,得到圓C的極坐標方程.(2)求出點M(x,y)到直線AB:x﹣y+2=0的距離,表示出△ABM的面積,通過兩角和的正弦函數(shù),結合絕對值的幾何意義,求解△ABM面積的最大值.【解答】解:(1)圓C的參數(shù)方程為(θ為參數(shù))所以普通方程為(x﹣3)2+(y+4)2=4.,x=ρcosθ,y=ρsinθ,可得(ρcosθ﹣3)2+(ρsinθ+4)2=4,化簡可得圓C的極坐標方程:ρ2﹣6ρcosθ+8ρsinθ+21=0.(2)點M(x,y)到直線AB:x﹣y+2=0的距離為△ABM的面積所以△ABM面積的最大值為19.已知函數(shù)(其中).(1)當a=-4時,求不等式的解集;(2)若關于x的不等式恒成立,求a的取值范圍.參考答案:(1)當a=-4時,求不等式,即為,所以|x-2|≥2,即x-2≤-2或x-2≥2,原不等式的解集為{x|x≤0或x≥4}. 4分(2)不等式即為|2x+a|+|x-2|≥3a2-|2-x|,即關于x的不等式|2x+a|+|4-2x|≥3a2恒成立.而|2x+a|+|4-2x|≥|a+4|,所以|a+4|≥3a2,解得a+4≥3a2或a+4≤-3a2,解得或.所以a的取值范圍是. 10分20.如圖,在四棱錐P-ABCD中,O為AC與BD的交點,AB^平面PAD,△PAD是正三角形,

DC//AB,DA=DC=2AB.(1)若點E為棱PA上一點,且OE∥平面PBC,求的值;(2)求證:平面PBC^平面PDC.參考答案:的知識易得:結合比例線段關系即可求得;(2)中要證明面面垂直,根據(jù)面由,所以.21.(本小題滿分14分)數(shù)列,滿足.(1)若是等差數(shù)列,求證:為等差數(shù)列;(2)若,求數(shù)列的前項和.參考答案:(1)證明詳見解析.(2).試題分析:(1)由得,,相減得,再求出,最后根據(jù)等差數(shù)列的定義求證即可.(2)記,①

②①-②得:,…………11分…………13分…………14分考點:1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論