![2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合_第1頁](http://file4.renrendoc.com/view/cf7369d6b76d7f8b8677e7afb67a2650/cf7369d6b76d7f8b8677e7afb67a26501.gif)
![2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合_第2頁](http://file4.renrendoc.com/view/cf7369d6b76d7f8b8677e7afb67a2650/cf7369d6b76d7f8b8677e7afb67a26502.gif)
![2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合_第3頁](http://file4.renrendoc.com/view/cf7369d6b76d7f8b8677e7afb67a2650/cf7369d6b76d7f8b8677e7afb67a26503.gif)
![2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合_第4頁](http://file4.renrendoc.com/view/cf7369d6b76d7f8b8677e7afb67a2650/cf7369d6b76d7f8b8677e7afb67a26504.gif)
![2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合_第5頁](http://file4.renrendoc.com/view/cf7369d6b76d7f8b8677e7afb67a2650/cf7369d6b76d7f8b8677e7afb67a26505.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合
2021年中考數(shù)學(xué)定理復(fù)習(xí)資料整合
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:同角或等角的補角相等
角的定理:同角或等角的余角相等
直線定理:過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最
短
幾何平行
平行定理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:同位角相等,兩直線平行;內(nèi)錯角相等,兩
直線平行;同旁內(nèi)角互補,兩直線平行
兩直線平行推論:兩直線平行,同位角相等;兩直線平行,內(nèi)錯角
相等;兩直線平行,同旁內(nèi)角互補
三角形內(nèi)角定理
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
-1-
全等三角形判定
定理:全等三角形的對應(yīng)邊、對應(yīng)角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個三角形全
等
角邊角定理(ASA):有兩角和它們的夾邊對應(yīng)相等的兩個三角形全
等
推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應(yīng)相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個直角
三角形全等
角的平分線
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形性質(zhì)
等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等(即等邊對等
角)
推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩
個角所對的邊也相等(等角對等邊)
對稱定理
-2-
定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平
分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理1:關(guān)于某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線
的垂直平分線
定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線
相交,那么交點在對稱軸上
逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么
這兩個圖形關(guān)于這條直線對稱
直角三角形定理
定理:在直角三角形中,如果一個銳角等于30°那么它所對的直
角邊等于斜邊的一半
判定定理:直角三角形斜邊上的中線等于斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平
方,即a"2+b"2=c"2
勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系
a"2+b'2=c"2,那么這個三角形是直角三角形
多邊形內(nèi)角和定理
定理:四邊形的內(nèi)角和等于360°;四邊形的外角和等于360。
多邊形內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)X180°
-3-
推論:任意多邊的外角和等于360°
平行四邊形定理
平行四邊形性質(zhì)定理:
1.平行四邊形的對角相等
2.平行四邊形的對邊相等
3.平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理:
1.兩組對角分別相等的四邊形是平行四邊形
2.兩組對邊分別相等的四邊形是平行四邊形
3.對角線互相平分的四邊形是平行四邊形
4.一組對邊平行相等的四邊形是平行四邊形
矩形定理
矩形性質(zhì)定理L矩形的四個角都是直角
矩形性質(zhì)定理2:矩形的對角線相等
矩形判定定理1:有三個角是直角的四邊形是矩形
矩形判定定理2:對角線相等的平行四邊形是矩形
菱形定理
菱形性質(zhì)定理1:菱形的四條邊都相等
菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分
一組對角
菱形面積=對角線乘積的一半,即S=(aXb)+2
-4-
菱形判定定理L四邊都相等的四邊形是菱形
菱形判定定理2:對角線互相垂直的平行四邊形是菱形
正方形定理
正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等
正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,
每條對角線平分一組對角
中心對稱定理
定理1:關(guān)于中心對稱的兩個圖形是全等的
定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,
并且被對稱中心平分
逆定理:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點
平分,那么這兩個圖形關(guān)于這一點對稱
等腰梯形性質(zhì)定理
等腰梯形性質(zhì)定理:
1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:
1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相
等,那么在其他直線上截得的線段也相等
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
-5-
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三
中位線定理
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的
一半
梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一
半L=(a+b)+2S=LXh
相似三角形定理
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的
延長線)相交,所構(gòu)成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應(yīng)相等,兩三角形相似(ASA)
2.兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理3:三邊對應(yīng)成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與
另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角
三角形相似
性質(zhì)定理:
1.相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等
于相似比
2.相似三角形周長的比等于相似比
-6-
3.相似三角形面積的比等于相似比的平方
三角函數(shù)定理
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于
它的余角的正弦值
任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于
它的余角的正切值
圓的定理
定理:過不共線的三個點,可以作且只可以作一個圓
定理:垂直于弦的直徑平分這條弦,并且評分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對的兩條
弧
推論2:弦的垂直平分弦經(jīng)過圓心,并且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直評分弦,并且平分弦所
對的另一條弧
定理:
1.在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相
等
2.經(jīng)過圓的半徑外端點,并且垂直于這條半徑的直線是這個圓的切
線
3.圓的切線垂直經(jīng)過切點的半徑
4.三角形的三個內(nèi)角平分線交于一點,這點是三角形的內(nèi)心
5.從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點
-7-
的連線平分兩條切線的夾角
6.圓的外切四邊形的兩組對邊的和相等
7.如果四邊形兩組對邊的和相等,那么它必有內(nèi)切圓
8.兩圓的兩條外公切線的長相等;兩圓的兩條內(nèi)公切線的長也相等
比例性質(zhì)定理
比例的基本性質(zhì)
如果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人入股合同范本
- 2025年度知識產(chǎn)權(quán)轉(zhuǎn)讓居間合同示范文本
- 2025年度刮膩子施工與室內(nèi)環(huán)境優(yōu)化合同
- 2025年對氯苯丁酮項目投資可行性研究分析報告
- 2025年度智能穿戴設(shè)備代理銷售與市場拓展合同范本
- 入黨生申請書
- 2025年燃油泵項目申請報告范稿
- 入武漢申請書
- 志愿者社團申請書
- 2025年度新型城鎮(zhèn)化項目工程咨詢服務(wù)合同范本
- 《農(nóng)機化促進法解讀》課件
- 最高法院示范文本發(fā)布版3.4民事起訴狀答辯狀示范文本
- 2023-2024學(xué)年度上期七年級英語期末試題
- 2024年燃?xì)廨啓C值班員技能鑒定理論知識考試題庫-下(多選、判斷題)
- 交通法規(guī)課件
- (優(yōu)化版)高中地理新課程標(biāo)準(zhǔn)【2024年修訂版】
- 《Python程序設(shè)計》課件-1:Python簡介與應(yīng)用領(lǐng)域
- 各類心理量表大全
- DB12T990-2020建筑類建設(shè)工程規(guī)劃許可證設(shè)計方案規(guī)范
- DB11T 1481-2024生產(chǎn)經(jīng)營單位生產(chǎn)安全事故應(yīng)急預(yù)案評審規(guī)范
- 《氓》教學(xué)設(shè)計 2023-2024學(xué)年統(tǒng)編版高中語文選擇性必修下冊
評論
0/150
提交評論