版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
概率論與數(shù)理統(tǒng)計隨機變量的分布函數(shù)第1頁,課件共30頁,創(chuàng)作于2023年2月隨機變量離散型連續(xù)型隨機變量的取值是可列個研究方法:分布律隨機變量的取值是不可列的研究方法:???第2頁,課件共30頁,創(chuàng)作于2023年2月對于隨機變量X,我們不僅要知道X取哪些值,要知道X取這些值的概率;而且更重要的是想知道X在任意有限區(qū)間(a,b)內(nèi)取值的概率.分布函數(shù)一、分布函數(shù)的概念例如1.概念的引入第3頁,課件共30頁,創(chuàng)作于2023年2月2.分布函數(shù)的定義第4頁,課件共30頁,創(chuàng)作于2023年2月2,分布函數(shù)F(x)的是事件的概率,是隨機變量X落在上的概率值,于是,對于任意的實數(shù)x1,x2(x1<x2),有:x1
x2
xXo0xxX分布函數(shù)隨機變量說明:1,定義中的X既可以是離散型,也可以是連續(xù)型.3,分布函數(shù)F(x)是定義在(-∞,+∞)上值域為[0,1]的普通函數(shù),以下可以借助于數(shù)學(xué)分析的方法研究隨機變量X的分布情況。第5頁,課件共30頁,創(chuàng)作于2023年2月實例
拋擲均勻硬幣,令求隨機變量X的分布函數(shù).解第6頁,課件共30頁,創(chuàng)作于2023年2月第7頁,課件共30頁,創(chuàng)作于2023年2月分布函數(shù)F(x)在x=xk(k=1,2,…)處有跳躍,其跳躍值為
pk=P{X=xk}.第8頁,課件共30頁,創(chuàng)作于2023年2月證明二、分布函數(shù)的性質(zhì)第9頁,課件共30頁,創(chuàng)作于2023年2月證明第10頁,課件共30頁,創(chuàng)作于2023年2月即任一分布函數(shù)處處右連續(xù).所以第11頁,課件共30頁,創(chuàng)作于2023年2月重要公式證明第12頁,課件共30頁,創(chuàng)作于2023年2月因此分布律為解則三、例題講解例1第13頁,課件共30頁,創(chuàng)作于2023年2月求分布函數(shù)第14頁,課件共30頁,創(chuàng)作于2023年2月第15頁,課件共30頁,創(chuàng)作于2023年2月第16頁,課件共30頁,創(chuàng)作于2023年2月第17頁,課件共30頁,創(chuàng)作于2023年2月解例2第18頁,課件共30頁,創(chuàng)作于2023年2月第19頁,課件共30頁,創(chuàng)作于2023年2月第20頁,課件共30頁,創(chuàng)作于2023年2月請同學(xué)們思考不同的隨機變量,它們的分布函數(shù)一定也不相同嗎?答不一定.例如拋均勻硬幣,令第21頁,課件共30頁,創(chuàng)作于2023年2月分布函數(shù)分布律離散型隨機變量分布律與分布函數(shù)的關(guān)系離散型隨機變量分布函數(shù)演示第22頁,課件共30頁,創(chuàng)作于2023年2月例
2一個靶子是半徑為2米的圓盤,設(shè)擊中靶上任一同心圓盤上的點的概率與該圓盤的面積成正比,并設(shè)射擊都能中靶,以X表示彈著點與圓心的距離.試求隨機變量X的分布函數(shù).解(1)若x<0,則{X≤x}是不可能事件,于是(2)X分布函數(shù)隨機變量第23頁,課件共30頁,創(chuàng)作于2023年2月(3)若,則是必然事件,于是分布函數(shù)隨機變量10123F(x)x第24頁,課件共30頁,創(chuàng)作于2023年2月
注意
兩類隨機變量的分布函數(shù)圖形的特點不一樣.第25頁,課件共30頁,創(chuàng)作于2023年2月用分布函數(shù)計算某些事件的概率分布函數(shù)隨機變量1.若已知X的概率函數(shù)為,則其分布函數(shù)為事件的概率為
2.若F(x)=P{X≤x}是隨機變量X的分布函數(shù),則第26頁,課件共30頁,創(chuàng)作于2023年2月例4設(shè)有隨機變量x的分布函數(shù)為分布函數(shù)隨機變量第27頁,課件共30頁,創(chuàng)作于2023年2月分布函數(shù)隨機變量第28頁,課件共30頁,創(chuàng)作于2023年2月例5
設(shè)隨機變量X的分布函數(shù)為解由分布函數(shù)的性質(zhì),我們有解方程組得分布函數(shù)隨機變量求:常數(shù)A,B.第29頁,課件共30頁,創(chuàng)作于2023年2月2.分布律與分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版團購工業(yè)地產(chǎn)協(xié)議書3篇
- 2024職業(yè)技能拓展訓(xùn)練合同
- 二零二五年度臨時道路建設(shè)臨建工程合同范本2篇
- 2025年度珠寶品牌授權(quán)與連鎖經(jīng)營合同范本2篇
- 二零二五版房地產(chǎn)項目市場調(diào)研與策劃咨詢服務(wù)合同范本3篇
- 二零二五年度農(nóng)副產(chǎn)品電商平臺數(shù)據(jù)分析與應(yīng)用合同
- 2025年度智能穿戴設(shè)備代生產(chǎn)加工合同范本4篇
- 2024政府機關(guān)信息化系統(tǒng)運維服務(wù)詢價采購合同3篇
- 個體餐飲店合伙人股權(quán)回購協(xié)議模板版B版
- 二零二五年度住宅樓屋頂綠化工程合同3篇
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報告
- 【地理】地圖的選擇和應(yīng)用(分層練) 2024-2025學(xué)年七年級地理上冊同步備課系列(人教版)
- (正式版)CB∕T 4552-2024 船舶行業(yè)企業(yè)安全生產(chǎn)文件編制和管理規(guī)定
- JBT 14588-2023 激光加工鏡頭 (正式版)
- 2024年四川省成都市樹德實驗中學(xué)物理八年級下冊期末質(zhì)量檢測試題含解析
- 九型人格與領(lǐng)導(dǎo)力講義
- 廉潔應(yīng)征承諾書
- 2023年四川省成都市中考物理試卷真題(含答案)
- 泵車述職報告
- 2024年山西文旅集團招聘筆試參考題庫含答案解析
- 恢復(fù)中華人民共和國國籍申請表
評論
0/150
提交評論