關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)大全_第1頁
關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)大全_第2頁
關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)大全_第3頁
關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)大全_第4頁
關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)大全_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

關(guān)于高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)大全高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);2、寫出點(diǎn)M的集合;3、列出方程=0;4、化簡(jiǎn)方程為最簡(jiǎn)形式;5、檢驗(yàn)。二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。求動(dòng)點(diǎn)軌跡方程的一般步驟:①建系——建立適當(dāng)?shù)淖鴺?biāo)系;②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;式,并化簡(jiǎn);⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。高中數(shù)學(xué)空間幾何體表面積體積公式1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其3、a—邊長(zhǎng),S=6a2,V=a3.4、長(zhǎng)方體a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc。5、棱柱S—h—高V=Sh。6、棱錐S—h—高V=Sh/3.7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3.8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6.9、圓柱r—底半徑,h—高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h。10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。11、r—底半徑h—高V=πr^2h/3.12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6.14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3.15、球臺(tái)r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6.16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4.17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。高中數(shù)學(xué)解題技巧a、三角函數(shù)與向量解題技巧平移問題:永遠(yuǎn)記住左右平移只是對(duì)x做變化,上下平移就是對(duì)y考點(diǎn):對(duì)于這類題型我們首先要知道它一般都是考我們什么,我覺做變化,永遠(yuǎn)切記。b、概率解題技巧它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡(jiǎn)問題看,同時(shí)可能會(huì)涉及到正余弦考在解題過程能學(xué)只要你能熟練掌握公式,這類題都不是問題。會(huì)樹狀圖和列表,題目也是相當(dāng)?shù)暮?jiǎn)單,只要你能審題準(zhǔn)確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對(duì)理最值(值域)、單調(diào)性、周期性、對(duì)稱性、未知數(shù)的取值范圍、平移科生來說,主要注意結(jié)合排列組合、獨(dú)立重復(fù)試驗(yàn)知識(shí)點(diǎn),同時(shí)會(huì)問題等要求我們準(zhǔn)確掌握分解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據(jù)向量公式將表示出來:其表示共有兩種方法,一我們必須拿全部分?jǐn)?shù)。種是模長(zhǎng)公式(該種方法是在題目沒有告訴坐標(biāo)的情況下應(yīng)用),題型:在這里我就不多說了,都是求概率,沒有什么新穎的地方,另一種就是用坐標(biāo)公式表示出來(該種方法是在題目告訴了坐標(biāo)),不過要注意我們?cè)?jīng)即在這里遇到過的線性規(guī)劃問題,還有就是籃球成功率與命中率和防第二步就是三角函數(shù)的化簡(jiǎn):化簡(jiǎn)的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似導(dǎo)公式(只要題目出現(xiàn)了跟或者有關(guān)的角度,一定想到誘導(dǎo)公式),題目。解題思路:第一步就是求出總體的情況第二步就是求出符合題意的情況第三步就是將兩者比起來就是題目要求的概率這類型題目對(duì)理科生來說一定要掌握好期望與方差的公式,同時(shí)最重要的是獨(dú)立重復(fù)試驗(yàn)概率的求法。c、幾何解題技巧考點(diǎn):這類題主要是考察咱們對(duì)空間物體的感覺,希望大家在平時(shí)學(xué)習(xí)過程中,多培養(yǎng)說,難度都比較簡(jiǎn)單,但是對(duì)理科生來說,可能會(huì)比較復(fù)雜一些,特別是在二面角的求法助線的做法以及邊長(zhǎng)的求法就變得如此之簡(jiǎn)單了。題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)解題思路:證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情的作法就是找中點(diǎn));另一種方法就是過直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。其實(shí)說實(shí)話,證明垂直的問題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來證明垂直。證面面垂直與證面面垂直:這類問題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來說是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來,這樣即為二面角(說白了就是應(yīng)用三垂線定理來找)二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。這里我著重說一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說一聲。d、圓錐曲線解題技巧考點(diǎn):這類題型,其實(shí)難度真的不是很大,我個(gè)人理解主要是考大家的計(jì)算能力怎么樣,還有就是對(duì)題目的理解能力,同時(shí)也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關(guān)系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現(xiàn)在還不知道,趁早去記一下,不然考試的時(shí)候都不知道的哈,我真的無語了。題型:這種類型的題一般都是以下幾種出法:第一個(gè)問一般情況就是求圓錐曲線方程或者就是求某一個(gè)點(diǎn)的軌跡方程,第二個(gè)問一般都是涉及到直線的問題,要么就是求范圍,要么就是求定值,要么就是求直線方程解題思路:求圓錐曲線方程:一般情況下題目有兩種求法,一種就是直接根據(jù)題目條件來求解(如題目告訴你曲線的離心率和過某一個(gè)點(diǎn)坐標(biāo)),另一種就是隱含的告訴我們橢圓的定義,然后讓我們?nèi)プ聊テ渲械囊馑?,去寫出曲線的方程,這種問法就比較難點(diǎn),其實(shí)也主要是看我們的基本功底怎么樣,對(duì)基礎(chǔ)扎實(shí)的同學(xué)來說,這種問法也不是問題的。求軌跡方程:這種問題需要我們首先對(duì)要求點(diǎn)的坐標(biāo)設(shè)出來A(x,y),然后用A點(diǎn)表示出題目中某一已知點(diǎn)B的坐標(biāo),然后用表示出來的點(diǎn)坐標(biāo)代入點(diǎn)B的軌跡方程中,這樣就可以求出A點(diǎn)的軌跡方程了,一般求出來都是圓錐曲線方程,如果不是,你就可能錯(cuò)了。直線與圓錐曲線問題:三個(gè)步驟你還知道嗎(一設(shè)、二代,三韋達(dá))。先做完這個(gè)三個(gè)步驟,然后看題目給了我們什么條件,然后對(duì)條件進(jìn)行化簡(jiǎn)(一般的條件都是跟向量呀,斜率呀什么的聯(lián)系起來,希望大家注意點(diǎn)),在化簡(jiǎn)的過程中我們需要代韋達(dá)進(jìn)去運(yùn)算,如果我們?cè)谶\(yùn)算的過程中遇到了,一定要記得應(yīng)用直線方程將表示出來,然后根據(jù)韋達(dá)化簡(jiǎn)到最后結(jié)果。最后看題目問我們什么,如果問定值,你還知道怎么做么,不知道的就現(xiàn)在來問我,如果問我們范圍,你還知道有一個(gè)東西么,如果問直線方程,你求出來的直線斜率有兩個(gè),還知道怎么做么,如果要想舍去其中一個(gè),你還記得一個(gè)東西么。同時(shí)如果你是一個(gè)追求完美的人,我希望你在做題的時(shí)候考慮到直線斜率存在與否的問題,如果你覺得你心胸開闊,那點(diǎn)分?jǐn)?shù)我不要了,我考慮斜率存不存在的問題,那么我就說你牛!個(gè)人理解的話,圓錐曲線都不是很難的,就是計(jì)算量比較復(fù)雜了一點(diǎn),但是只要我們用心、專心點(diǎn),都是可以做出來的,不信你慢慢的去嘗試看看!e、函數(shù)導(dǎo)數(shù)解題技巧考點(diǎn):這種類型的題主要是考大家對(duì)導(dǎo)數(shù)公式的應(yīng)用,導(dǎo)數(shù)的含義,明確導(dǎo)數(shù)可以用來干什么,如果你都不知道導(dǎo)數(shù)可以用來干什么,你還談什么做題呢。在導(dǎo)數(shù)這塊,我是希望大家都能盡量的多拿一些分?jǐn)?shù),因?yàn)槠潆y度不是很大,主要你用心去學(xué)習(xí)了,記住方法了,這個(gè)分?jǐn)?shù)對(duì)我們來說都是可以小菜一碟的。題型:最值、單調(diào)性(極值)、未知數(shù)的取值范圍(不等式)、未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn))解題思路:最值、單調(diào)性(極值):首先對(duì)原函數(shù)求導(dǎo),然后令導(dǎo)函數(shù)為零求出極值點(diǎn),然后畫出表格判斷出在各個(gè)區(qū)間的單調(diào)性,最后得出結(jié)論。未知數(shù)的取值范圍(不等式):其實(shí)它就是一種一種變相的求最值問題,不知道大家還記得么,記住我講課的表情,未知數(shù)放在一邊,把已知的數(shù)放在另外一邊,求出相應(yīng)的最值,咱們就勝利了,這個(gè)種看起來很復(fù)雜,其實(shí)很簡(jiǎn)單,你說呢。未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn)):這種要是沒有掌握方法的人,覺得:哇,怎么就那么難呀,其實(shí)不然,很簡(jiǎn)單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數(shù)放在一邊,把知道的數(shù)放在一邊去,這樣去求出已知數(shù)的最值,然后簡(jiǎn)單的畫一個(gè)圖形我們就可以分析出未知數(shù)的取值范圍了,說起來也挺簡(jiǎn)單的,如果有什么不了解的,可以馬上問我,不要留下遺憾。f、數(shù)列解題技巧考點(diǎn):對(duì)于數(shù)列,我對(duì)大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分?jǐn)?shù),如果要是有人能全部做對(duì),我也替你高興,這類題型,主要是考大家對(duì)等比等差數(shù)列的理解,包括通項(xiàng)與求和,難度還是有的,其實(shí)你要是留意生活的話,這類題還是不是我們想象中那么困難哈。題型:一般分為證明和計(jì)算(包括通項(xiàng)公式、求和、比較大小),解題思路:證明:就是要求我們證明一個(gè)數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個(gè)等差數(shù)列或者等比數(shù)列。另一種方法就是應(yīng)用等差中項(xiàng)或者等比中項(xiàng)來證明數(shù)列。計(jì)算(通項(xiàng)公式):一般這個(gè)題都還是比較簡(jiǎn)單的,這類型的題,我只要求大家能掌握其中題目表達(dá)式的關(guān)鍵字眼(如出現(xiàn)要用什么方法,如果出現(xiàn)要用什么方法,如果出現(xiàn)如果出現(xiàn)),我相信通項(xiàng)公式對(duì)大家來說應(yīng)該是達(dá)到駕輕就熟的地步了,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論