版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
分子力學(xué)簡介物理自然科學(xué)專業(yè)資料分子力學(xué)簡介物理自然科學(xué)專業(yè)資料分子力學(xué)簡介物理自然科學(xué)專業(yè)資料
1.分子模擬簡介分子模擬包括四種方法:量子力學(xué)法蒙特卡洛法分子力學(xué)法分子動力學(xué)方法
1.分子模擬簡介分子模擬法是用計算機以原子水平的分子模型來模擬分子的結(jié)構(gòu)與行為,進而模擬分子體系的各種物理與化學(xué)性質(zhì)。分子模擬不但可以模擬分子的靜態(tài)結(jié)構(gòu),也可以模擬分子的動態(tài)行為(分子鏈的構(gòu)象、分子的吸附、分子的擴散以及相互作用)。原子結(jié)構(gòu)模擬電子云薛定諤方程能量性質(zhì),化學(xué)鍵等信息量子化學(xué)計算:一般處理幾個到幾十個原子常見軟件:GAUSSIAN,NWCHEM…密度泛函(DFT):可以算到上百個原子常見軟件:VASP量子力學(xué)模擬:abinitio實際上,許多希望用分子模擬方法解決的問題,對于量子力學(xué)方法來講,體系過大而無法處理。因為量子力學(xué)面對體系中的電子,即便是忽略一些電子的半經(jīng)驗方法仍然要處理大量的粒子,因而對大的體系難以實現(xiàn)。分子力學(xué)方法分子力學(xué)從本質(zhì)上說是能量最小值方法,即在原子間相互作用勢的作用下,通過改變粒子分布的幾何位型,以能量最小為判據(jù),從而獲得體系的最佳結(jié)構(gòu)。分子力學(xué)忽略電子的運動,只計算與原子核位置相關(guān)的體系能量。分子力學(xué)認為分子體系的勢能函數(shù)是分子體系中原子位置的函數(shù),將分子體系作為在勢能棉上運動的力學(xué)體系來處理,求解的是經(jīng)典力學(xué)方程,而不是量子力學(xué)的薛定諤方程。分子力學(xué)可以求得分子的平衡結(jié)構(gòu)和熱力學(xué)性質(zhì),但不能得到分子體系與電子結(jié)構(gòu)相關(guān)的其他性質(zhì)。Karplus、Levitt、Warshel工作的突破意義在于設(shè)法讓量子力學(xué)和分子力學(xué)結(jié)合在化學(xué)過程的建模之中,實現(xiàn)復(fù)雜化學(xué)系統(tǒng)的多尺度模擬。量子力學(xué)/分子力學(xué)聯(lián)用方法(QM/MM)分子動力學(xué)模擬分子力學(xué)生成分子力場蒙特卡洛模擬分子對接人類認識客觀世界是通過實驗方法與理
論方法來實現(xiàn)的。而計算機模擬被稱為
是人類認識客觀世界的第三種方法。SuperComputer
分子模擬的意義實驗方法研究生物體系的動態(tài)運動X射線晶體分析(X-raycrystallography)只能提供蛋白質(zhì)的靜態(tài)結(jié)構(gòu)時間分辨X射線方法(Time-resolvedX-ray)對研究體系有很強的限制性核磁共振(NMR)目前只能應(yīng)用于較小的體系熒光共振能量轉(zhuǎn)移技術(shù)(FRET)分子模擬時間尺度2.分子力學(xué)簡介Born-Oppenheimer近似下對勢能面的經(jīng)驗性擬合。量子力學(xué)中的薛定諤方程(非相對論和無時間依賴的情況下):分子力學(xué)(MolecularMechanics),又叫力場方法(forcefieldmethod),是基于經(jīng)典力學(xué)方程的計算分子的平衡結(jié)構(gòu)和能量的方法。基本假設(shè):體系的哈密頓算符與原子核(R)和電子(r)位置相關(guān)的波函數(shù)基于Born-Oppenheimer近似,其物理模型可描述為:原子核的質(zhì)量是電子質(zhì)量的103~105倍,電子速度遠遠大于原子核的運動速度,每當(dāng)核的分布形式發(fā)生微小變更,電子立刻調(diào)整其運動狀態(tài)以適應(yīng)新的核場。這意味著,在任一確定的核分布形式下,電子都有相應(yīng)的運動狀態(tài);同時核間的相對運動可視為所有電子運動的平均結(jié)果。所以電子的波函數(shù)只依賴于原子核的位置,而不是他們的動能。于是這個近似認為,電子的運動與原子核的運動可以分開處理,可以將上式分解為電子運動的波函數(shù)核運動的波函數(shù)①②電子運動方程:核運動方程:方程①中的能量Eel(勢能面)僅僅是原子核坐標(biāo)有關(guān)。相應(yīng)的,方程②所表示的為在核勢能面E(R)上的核運動方程。直接求解方程①,采用的是從頭算或者是半經(jīng)驗,這樣的量化計算都是把電子的波函數(shù)和能量處理成原子核坐標(biāo)的函數(shù)。由于量子化學(xué)求解電子波函數(shù)和勢能面耗時巨大,常常將勢能面進行經(jīng)驗性的擬合,成為力場,由此構(gòu)成分子力學(xué)的基礎(chǔ)。將方程②用牛頓運動方程代替,勢能面采用力場擬合,就構(gòu)成了分子動力學(xué)的基礎(chǔ)。①②電子運動方程:核運動方程:分子力場是分子力學(xué)的核心。分子力學(xué)的基本理論就是一個分子力場由分子內(nèi)相互作用和分子間相互作用兩大部分構(gòu)成,即力場的勢能包括成鍵和非鍵相互作用,所有的勢能的總和即為分子的構(gòu)象能。簡單分子力場分子力學(xué)的基本思想-1930,D.H.Andrews在分子內(nèi)部,化學(xué)鍵都有“自然”的鍵長值和鍵角值。分子要調(diào)整它的幾何形狀(構(gòu)象),以使其鍵長值和鍵角值盡可能接近自然值,同時也使非鍵作用處于最小的狀態(tài),給出原子核位置的最佳排布。分子的經(jīng)典力學(xué)模型-1946,T.L.HillT.L.Hill提出用vanderWaals作用能和鍵長、鍵角的變形能來計算分子的能量,以優(yōu)化分子的空間構(gòu)型。Hill指出:分子內(nèi)部的空間作用是眾所周知的:1)基團或原子之間靠近時則相互排斥;2)為了減少這種作用,基團或原子就趨于相互離開,但是這將使鍵長伸長或鍵角發(fā)生彎曲,又引起了相應(yīng)的能量升高。最后的構(gòu)型將是這兩種力折衷的結(jié)果,并且是能量最低的構(gòu)型。分子力學(xué)的發(fā)展雖然分子力學(xué)的思想和方法在40年代就建立起來了,但是直到50年代以后,隨著電子計算機的發(fā)展,用分子力學(xué)來確定和理解分子的結(jié)構(gòu)和性質(zhì)的研究才越來越多。直到這時,才可以說分子力學(xué)已成為結(jié)構(gòu)化學(xué)研究的重要方法之一。近幾年來,隨著現(xiàn)代技術(shù)的發(fā)展和應(yīng)用,特別是計算機技術(shù)的發(fā)展,分子力學(xué)方法已不僅能處理一般的中小分子,也不僅主要應(yīng)用于有機化學(xué)領(lǐng)域,而且能處理大分子體系。在其他的一些領(lǐng)域,如生物化學(xué)、藥物設(shè)計、配位化學(xué)中,都有了廣泛的應(yīng)用。目前,分子力學(xué)是模擬蛋白質(zhì)、核酸等生物大分子結(jié)構(gòu)和性質(zhì)以及配體-受體相互作用的常用方法。隨著分子圖形學(xué)的不斷發(fā)展,分子力學(xué)已經(jīng)廣泛應(yīng)用于分子模型設(shè)計。當(dāng)今優(yōu)秀的分子設(shè)計程序都將分子力學(xué)作為初始模型優(yōu)化的主要方法,分子模型的構(gòu)建也是分子力學(xué)為主,分子力學(xué)方法是計算機輔助分子設(shè)計中常用的方法,特別是在有無設(shè)計中,已離不開分子力學(xué)計算和模擬方法。應(yīng)用分子力學(xué)方法,可以迅速得到分子的低能構(gòu)象,通過構(gòu)象分析可以獲得合理的藥效構(gòu)象和藥效基團。如已知受體的三維結(jié)構(gòu),可以用分析力學(xué)模擬藥物與受體的相互作用。在分子的定量結(jié)構(gòu)活性關(guān)系研究中,也需要用分子力學(xué)方法進行計算。由于分子力學(xué)是經(jīng)驗的計算方法,不同的分子力學(xué)方法會采用不同的勢能函數(shù)(PotentialEnergyFunction,PEF)表達式,而且力場參數(shù)值也會不同。一般將分子的PEF分解成五部分:鍵伸縮能鍵彎曲能二面角扭轉(zhuǎn)能范德華作用能靜電作用能然后,將表達式中的能量使用不同的經(jīng)驗公式代替,這些經(jīng)驗公式就是力場。針對材料分子的力場主要有DREIDING,MM2,UFF,COMPASS力場等,針對蛋白質(zhì)和生物大分子的力場主要有AMBER,OPLA,VFF,CHARMM,GROMOSD力場等。鍵伸縮能BondStretching——諧振子函數(shù)鍵伸縮力常數(shù)鍵長平衡鍵長莫斯函數(shù)(MorseFunction)TRIPOS,Cherm-X,CHARMM和AMBER采用諧振子函數(shù)形式CVFF,DRIEDING和UFF既支持莫斯函數(shù)也支持諧振子模型MM2和MMX用二階泰勒展開的莫斯函數(shù)MM3,CFF和MMFF94用三階泰勒展開的莫斯函數(shù)含非諧項的函數(shù):V=(k/2)(r-r0)2[1-k1’(r-r0)-k2”(r-r0)2-k3’”(r-r0)3]De:depthofthepotentialenergyminimumA=ω√μ/2Deμ:messω:frequencyofthebondvibration(ω=√κ/μ)l0:thereferencevalueofthebond鍵角彎折能AngleBending——諧振子模型鍵角彎折力常數(shù)鍵角平衡鍵角諧振子模型在偏離平衡位置不大的情況下(10°以內(nèi))可以取得很好的結(jié)果。采用諧振子的力場包括:TRIPOS,CHEM-X,CHARMM,AMBER以及CVFF等二面角扭轉(zhuǎn)能TorsionRotation為勢壘高度(barrierheight),定量描述了二面角旋轉(zhuǎn)的難易程度;N為多重度(multiplicity),指鍵從0°到360°旋轉(zhuǎn)過程中能量極小點的個數(shù);為相因子(phasefactor),指單鍵旋轉(zhuǎn)通過能量極小值時二面角的數(shù)值。ω為扭轉(zhuǎn)角度(torsionangle)大部分力場如AMBER,TRIPOS,CHEM-X,CHARMM,COSMIC,DREIDING和CVFF采用較簡單的勢函數(shù)形式第二代力場如MM2,MM3,CFF及MMFF94采用傅里葉級數(shù)形式由于二面角的扭轉(zhuǎn)對總能量的貢獻小于鍵長和鍵角的貢獻,一般情況下二面角的改變要比鍵長和鍵角的變化自由得多。因此在一些處理大分子的力場中常保持鍵長、鍵角不變,只考慮二面角及其他的作用而優(yōu)化整個分子的構(gòu)象和能量。交叉相互作用項CrossingTerms鍵伸縮-鍵伸縮相互作用鍵伸縮-鍵角彎折相互作用鍵伸縮-二面角旋轉(zhuǎn)相互作用鍵角彎折-鍵角彎折相互作用鍵角彎折-二面角旋轉(zhuǎn)相互作用應(yīng)用TRIPOS,CHEM-X,DREIDING,AMBER,UFF和COSMIC力場中沒有相互作用項MM2和MMFF94只支持鍵伸縮-鍵角彎折相互作用項MM3力場支持鍵伸縮-鍵角彎折、鍵角彎折-鍵角彎折、鍵伸縮-二面角旋轉(zhuǎn)相互作用項CVFF和CFF91都支持范德華相互作用能——Lennard-Jones勢函數(shù)r為原子對間的距離;ε為勢阱深度,ε為勢能參數(shù),因原子的種類各異。正的部分為排斥勢,負的部分為吸引勢n取6,m取12時,叫做LJ6-12勢函數(shù),用于AMBER,CVFF,CHARMM,DREIDING,UFF以及TRIPOS等力場ε靜電相互作用ElectrostaticContributions點電荷法:通過經(jīng)驗規(guī)則或者量化計算確定每個原子上的部分電荷(partialcharge),兩個原子之間的靜電作用用庫侖公式來計算。偶極矩法:根據(jù)某些規(guī)則計算出每個化學(xué)鍵的偶極矩,通過計算偶極-偶極相互作用來描述靜電相互作用。
是分子間或分子內(nèi)偶極-偶極相互作用的能量和是兩個偶極的偶極矩是兩個偶極矩間的角度和是連接兩個偶極向量間的夾角兩種方法在處理有機小分子體系的時候效率相似,但是當(dāng)用來處理帶電生物大分子體系時,偶極矩方法顯得過于耗時。MM2,MM3和MMX用鍵偶極矩法計算靜電相互作用其它力場采用點電荷方法計算點電荷方法的問題在于如何把電荷分配到原子上量子化學(xué)計算法電荷可以由多極矩、熱力學(xué)性質(zhì)、靜電勢擬合得來經(jīng)驗規(guī)則法點電荷法vs偶極矩法分子的力場形式-氫鍵‘“能量是相對的由不同的方法計算得到的能量的絕對值是毫無意義的。只有當(dāng)它與同體系的其他構(gòu)象計算得到的能量相比較時才有意義。比較不同程序計算得到的能量值用同一種程序時,比較不同分子的能量值無意義無意義力場參數(shù)化分子力學(xué)勢能函數(shù)是有一系列的可調(diào)參數(shù)組成的。對可調(diào)參數(shù)進行優(yōu)化,使分子力學(xué)的計算值最符合分子的某些性質(zhì)的實驗數(shù)值,得到一套力場的優(yōu)化參數(shù),再使用這套參數(shù)去預(yù)測相同原子類型的其他分子的結(jié)構(gòu)和性質(zhì)。分子力學(xué)計算結(jié)果的精確性除了與力場勢能函數(shù)表達式有關(guān)外,還與力場參數(shù)的數(shù)值密切相關(guān)。有效的力場勢能函數(shù)和正確的力場函數(shù)可使分子力學(xué)計算達到很高的精度。一個好的力場不僅能重現(xiàn)已被研究過的實驗觀察結(jié)果,而且能有一定的廣泛性,能用于解決未被實驗測定過的分子的結(jié)構(gòu)和性質(zhì)。對于不同的力場不僅力場參數(shù)不同,函數(shù)形式也可能不同。因此,在將一個力場中的參數(shù)應(yīng)用于另一個力場時應(yīng)十分小心。實驗數(shù)據(jù)擬合力場參數(shù)化的過程要在大量的熱力學(xué)、光譜學(xué)實驗數(shù)據(jù)的基礎(chǔ)上進行,有時也需要由量子化學(xué)計算的結(jié)果提供數(shù)據(jù)。傳統(tǒng)的分子力學(xué)參數(shù)化方法是通過擬合實驗數(shù)據(jù)(幾何構(gòu)型、構(gòu)象能、生成熱、光譜數(shù)據(jù)等)來優(yōu)化參數(shù)。----鍵伸縮振動常數(shù)可直接由振動光譜獲得。----平衡鍵長、平衡鍵角和角彎曲常數(shù)可由X射線衍射、中子衍射、電子衍射等方法測定。----扭轉(zhuǎn)力常數(shù)來自于NMR譜帶和弛豫時間。----構(gòu)象能可從光譜和熱化學(xué)數(shù)據(jù)得到。----非鍵參數(shù)可從晶格參數(shù)和液體的物理性質(zhì)數(shù)據(jù)獲得。量化計算擬合力場在分子力場發(fā)展的過程中面臨的最大困難在于實驗數(shù)據(jù)的缺乏。這樣就會在位能函數(shù)的參數(shù)化時遇到麻煩。原則上可以用量子化學(xué)從頭計算法來確定力場參數(shù)。過去僅僅是利用了坐標(biāo)和能量的關(guān)系。很顯然,要準確地擬合位能面,就需要有足夠多的計算點分布在整個位能面上。結(jié)果就會使得計算量變得非常大。但我們注意到從頭計算不僅可以得到能量,原子電荷,還可以得到能量對坐標(biāo)的一階導(dǎo)數(shù)(即原子所受的力),能量對坐標(biāo)的二階導(dǎo)數(shù)(Hessian矩陣元)。這些結(jié)果和構(gòu)成力場的基本要素—力常數(shù),電荷等是密切相關(guān)的。這樣我們通過一次計算就可以得到用于擬合位能面的多個數(shù)據(jù)。常見的力場及程序1.MM形態(tài)力場(Allinger等1989)按發(fā)展先后順序有MM、MM2、MM3、MM4等特點:將原子細分,如C原子分為sp3、sp2、sp、酮基碳、環(huán)丙烷碳、碳自由基、碳陽離子等在MM形式的力場中仔細考慮了許多交叉作用項,其結(jié)果往往優(yōu)于其他形式的力場。相對的,其力場形式較為復(fù)雜,比較不易程序化,計算耗時。MM力場適用于各種有機化合物、自由基、離子??傻玫骄_的構(gòu)型、構(gòu)型能、各種熱力學(xué)性質(zhì)、振動光譜、晶體能量等。2.AMBER力場(加州大學(xué)PeterKollman等1984)特點:力場參數(shù)全部來自計算結(jié)果與實驗結(jié)果的對比。AMBER力場適用于較小的蛋白質(zhì)、核酸、多糖等生化分子??傻玫胶侠淼臍鈶B(tài)分子幾何結(jié)構(gòu)、構(gòu)型能、振動頻率及溶劑化自由能。3.CHARMM力場(哈佛大學(xué)MartinKarplus等,1983)力場參數(shù)除來自計算結(jié)果與實驗值的對比外,并引用了大量地量子計算結(jié)果為依據(jù)。此力場適用于小的有機分子、溶液、聚合物、生化分子等。特點:除有機金屬分子外,此力場可得到與實驗結(jié)果相近的結(jié)構(gòu)、作用能、構(gòu)型能、轉(zhuǎn)動能障、振動頻率、自由能和許多與時間相關(guān)的物理量。4.CVFF力場(ConsistentValenceForceField)Dauber-Osguthorpegroup,1988適用范圍包括有機小分子和蛋白質(zhì)體系擴展后可用于某些無機體系的模擬,如硅酸鹽、鋁硅酸鹽、磷鋁化合物主要用于預(yù)測分子的結(jié)構(gòu)和結(jié)合自由能5第二代力場(DFF91、CFF95、PCFF、MMFF93)特點:形式上較上述經(jīng)典力場復(fù)雜,需要大量地力常數(shù)。其力常數(shù)的推導(dǎo)除引用大量的實驗數(shù)據(jù)外,還參照了精確的量子計算結(jié)果。能精確計算分子的各種性質(zhì)、結(jié)構(gòu)、光譜、熱力學(xué)性質(zhì)、晶體特性等。適用于有機分子和不含過渡金屬元素的分子系統(tǒng)。AMBER蛋白質(zhì)力場列表AMBERFF94Connelletal.,1995AMBERFF96Kollmanetal.,1995,修正了關(guān)于二面角的描述AMBERFF99Wangetal.,2000,修改二面角參數(shù)AMBERFF99SBHornaketal.,2006,修改主鏈二面角參數(shù)AMBERFF02,F(xiàn)F02ERCieplaketal.,2001,Wangetal.2006極化力場AMBERFF03Duanetal.,2003,量子力學(xué)計算獲得電荷值,采用連續(xù)電介模型處理溶劑極化效應(yīng),修正二面角參數(shù)AMBERFF99SB-ILDNLindorff-Larsenetal.,2010,修正支鏈二面角參數(shù)AMBERFF99SB-NMRLietal.,2010,修正二面角參數(shù)AMBERFF14SB、FF14SBonlyscMaieretal.,修正二面角參數(shù)分子力場的選擇蛋白質(zhì)分子的模擬:首選AMBER力場、CHARMM力場、GROMCS力場,也可用CFF力場、CVFF力場和MMFF94力場核酸分子的模擬:采用AMBER力場、CHARMM力場、GROMCS力場、MMFF94力場或用戶自定義的力場小分子-蛋白質(zhì)復(fù)合物體系的模擬:首選CHARMM力場和MMFF94力場,也可用CVFF力場和CFF力場高分子的模擬:首選COMPASS力場,也可用PCFF力場和CFF95力場力場所存在的問題兩個相互作用原子間的誘導(dǎo)偶極的作用會受到其它原子的影響;非鍵作用勢中假定原子為球形,實際上非鍵作用受原子形狀影響,還需考慮孤對電子;諧振勢函數(shù)不能精確擬合實驗數(shù)據(jù)對于靜電作用的處理過于簡化。力場的發(fā)展趨勢考慮原子極化率取用高次項發(fā)展含金屬的力場E分子力學(xué)的應(yīng)用分子力學(xué)最重要的內(nèi)容是根據(jù)適合的力場計算分子各種可能構(gòu)象的勢能,勢能最低的構(gòu)象為最為穩(wěn)定的構(gòu)象。尋找勢能最低點的過程稱為能量最小化,所得到的構(gòu)象稱為幾何優(yōu)化構(gòu)象。分子的幾何優(yōu)化構(gòu)象是計算分子性能的基礎(chǔ)。局部極小值:鞍點粗結(jié)構(gòu)能量極小構(gòu)象分子幾何優(yōu)化r分子結(jié)構(gòu)的優(yōu)化分子結(jié)構(gòu)的優(yōu)化用于描述分子初始結(jié)構(gòu)的原子坐標(biāo)可以使用分子內(nèi)坐標(biāo)、直角坐標(biāo)或晶體坐標(biāo)。從晶體數(shù)據(jù)得到初始結(jié)構(gòu)數(shù)據(jù)往往是比較方便的,若沒有晶體數(shù)據(jù),則可用Dreiding模型來估計。輸入坐標(biāo)及連接關(guān)系力場選擇、作用項、參數(shù)能量極小化最終結(jié)構(gòu)與能量其它信息分子結(jié)構(gòu)的優(yōu)化除了初始坐標(biāo)外,還要提供分子中所有原子的聯(lián)接關(guān)系,以便自動搜索任何兩個原子之間的作用,按不同的聯(lián)接關(guān)系以不同的能量函數(shù)形式計算對總能量的貢獻。計算中所用的能量參數(shù)大部分已在程序中準備好,有時,要對某些參數(shù)進行修改或增補。輸入坐標(biāo)及連接關(guān)系力場選擇、作用項、參數(shù)能量極小化最終結(jié)構(gòu)與能量其它信息分子結(jié)構(gòu)的優(yōu)化分子總能量是原子三維坐標(biāo)的函數(shù),在計算完初始構(gòu)象的分子能量后,要進行能量極小化的迭代,直到達到收斂標(biāo)準為止。最終給出分子體系優(yōu)化的原子坐標(biāo),總空間能及各能量項的貢獻。輸入坐標(biāo)及連接關(guān)系力場選擇、作用項、參數(shù)能量極小化最終結(jié)構(gòu)與能量其它信息分子結(jié)構(gòu)的優(yōu)化由于一般只是局部優(yōu)化,這樣的計算只能找到所用的初始構(gòu)象附近的“最優(yōu)構(gòu)象”。所以,選擇初始構(gòu)象是非常關(guān)鍵的。若為了找到全局能量最低構(gòu)象,須將所有可能的初始構(gòu)象分別進行優(yōu)化,最后進行比較,從而確定分子體系的最優(yōu)構(gòu)象。對于較大的分子,可能的初始構(gòu)象的數(shù)目會隨原子數(shù)目的增加而急劇增加。在選擇初始構(gòu)象時,應(yīng)把從基本的化學(xué)知識方面考慮是不可能的構(gòu)象略去。能量極小化算法一級微商算法最陡下降算法SteepestDescents-SD共軛梯度算法ConjugateGradients–CONJ二級微商算法牛頓-拉深法Newton-RaphsonMethod能量極小化算法-最陡下降法(SD)能量極小化算法-共軛梯度法(CONJ)共軛梯度法是一個典型的共軛方向法,它的每一個搜索方向是互相共軛的,而這些搜索方向d僅僅是負梯度方向與上一次迭代的搜索方向的組合,因此,存儲量少,計算方便。分子動力學(xué)模擬的基本步驟讀入模型參數(shù)、模擬控制參數(shù)初始化能量優(yōu)化升溫長時間平衡模擬數(shù)據(jù)分析避免局部分子重疊根據(jù)所有分子的當(dāng)前坐標(biāo)計算分子的受力根據(jù)受力更新分子的坐標(biāo)在此過程中收據(jù)用于計算宏觀性質(zhì)的有關(guān)信息SD+CONJ能量極小化算法-Newton-Raphson法以函數(shù)為例,能量極小化算法比較最陡下降法: 計算簡單,需記憶的容量??;遠離極小點時收斂快,常作為其他方法的第一步。收斂速度較慢。原因是最陡下降方向只有在該點附近有意義。共軛梯度法收斂快,易陷入局部勢阱,對初始結(jié)構(gòu)偏離不大Newton-Raphson法 計算量較大,當(dāng)微商小時收斂快分子力學(xué)的特點概念清楚,便于理解及應(yīng)用概念簡明易于接受。分子力學(xué)中的總“能量”被分解成鍵的伸縮、鍵角彎曲、鍵的扭曲和非鍵作用等,比起量子化學(xué)計算中的Fock矩陣等概念來要直觀易懂。
分子力學(xué)的特點計算速度快量子化學(xué)從頭算的計算量隨原子軌道數(shù)目的增加,按4次方的速度上升,而分子力學(xué)的計算量僅與原子數(shù)目的平方成正比。計算時間-MM正比于原子數(shù)m的平方m2QM正比于軌道數(shù)n的n4或n3分子力學(xué)的特點與量子化學(xué)計算相輔相成分子力學(xué)是一種經(jīng)驗方法,其力場是在大量的實驗數(shù)據(jù)的基礎(chǔ)上產(chǎn)生的。分子力學(xué)宜用于對大分子進行構(gòu)象分析、研究與空間效應(yīng)密切相關(guān)的有機反應(yīng)機理、反應(yīng)活性、有機物的穩(wěn)定性及生物活性分子的構(gòu)象與活性的關(guān)系;但是,當(dāng)研究對象與所用的分子力學(xué)力場參數(shù)化基于的分子集合相差甚遠時不宜使用,當(dāng)然也不能用于人們感興趣但沒有足夠多的實驗數(shù)據(jù)的新類型的分子。分子力學(xué)的特點與量子化學(xué)計算相輔相成對于化合物的電子結(jié)構(gòu)、光譜性質(zhì)、反應(yīng)能力等涉及電子運動的研究,則應(yīng)使用量子化學(xué)計算的方法。然而,在許多情況下,將量子化學(xué)計算和分子力學(xué)計算結(jié)合使用能取得較好的效果。分子力學(xué)計算結(jié)果可提供量子化學(xué)計算所需的分子構(gòu)象坐標(biāo),而量子化學(xué)計算結(jié)果又給出了分子力學(xué)所不能給出的分子的電子性質(zhì)。分子力學(xué)應(yīng)用范例:QM/MMQM/MM方法發(fā)展來源于可以將比較大的化學(xué)體系劃分為需要利用QM處理的發(fā)生化學(xué)反應(yīng)的電子重要區(qū)域和只是作為環(huán)境的用MM處理的部分QM/MM基本原理QM/MM哈密頓如下:其中MM為常規(guī)的分子力場,如AMBER力場有如下函數(shù)表達式:QM/MM使用QM方法的選擇QM/MM成鍵部分的處理QM方法的選取需要在計算效率及計算精度上取得一個較好的平衡(一般精度越高,計算量越大)一般計算速度從頭算方法>DFT>半經(jīng)驗量化方法在Amber12中可以使用的QM方法AMBER自帶的可用的半經(jīng)驗量化方法有:PM3,AM1,MNDO,PDDG/PM3,PDDG/MNDO,DFTB及SCC-DFTB;其中DFTB及SCC-DFTB需要到dftb網(wǎng)站去下載相應(yīng)的參數(shù);可以聯(lián)合使用外部量化程序:Gaussian,GAMESS-US,ADF,NWChem,Orca,TeraChem(基于GPU的量化程序)在Amber12中半經(jīng)驗
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版化工危險品倉庫租賃及消防設(shè)施配備協(xié)議3篇
- 2024校車司機服務(wù)滿意度調(diào)查聘用合同3篇
- 專業(yè)墻面刷涂料分包合作合同一
- 二零二五年度不銹鋼欄桿設(shè)計與安裝服務(wù)協(xié)議3篇
- 二零二五年特色街區(qū)攤位租賃經(jīng)營協(xié)議2篇
- 2025賓館客房租賃及酒店旅游咨詢服務(wù)合同范本3篇
- 二零二五年度智能機器人OEM研發(fā)與生產(chǎn)合作協(xié)議
- 二零二五版影視作品眾籌投資與分成合同3篇
- 2024版工程設(shè)計協(xié)議終止協(xié)議范本版B版
- 忻州職業(yè)技術(shù)學(xué)院《生物藥物臨床前評價》2023-2024學(xué)年第一學(xué)期期末試卷
- 健康中國產(chǎn)業(yè)園規(guī)劃方案
- (2024年)二年級上冊音樂
- 2024屆高考英語一輪復(fù)習(xí)讀后續(xù)寫脫險類續(xù)寫講義
- ISO13485內(nèi)部審核檢查表+內(nèi)審記錄
- 2024年《藥物臨床試驗質(zhì)量管理規(guī)范》(GCP)網(wǎng)絡(luò)培訓(xùn)題庫
- 新華健康體檢報告查詢
- 2024版智慧電力解決方案(智能電網(wǎng)解決方案)
- 公司SWOT分析表模板
- 小學(xué)預(yù)防流行性感冒應(yīng)急預(yù)案
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設(shè)-第1篇
- 美術(shù)家協(xié)會會員申請表
評論
0/150
提交評論