北京西城14中2022-2023學(xué)年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
北京西城14中2022-2023學(xué)年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
北京西城14中2022-2023學(xué)年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
北京西城14中2022-2023學(xué)年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
北京西城14中2022-2023學(xué)年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,是函數(shù)的兩個零點,則的前10項和等于()A. B.15 C.30 D.2.利用獨立性檢驗來考慮兩個分類變量X與Y是否有關(guān)系時,通過查閱下表來確定“X和Y有關(guān)系”的可信度.如果k>5.024,那么就有把握認(rèn)為“X和Y有關(guān)系”的百分比為()P(K2>k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83A.25% B.95%C.5% D.97.5%3.對任意實數(shù),若不等式在上恒成立,則的取值范圍是()A. B. C. D.4.二項式展開式中,的系數(shù)是(

)A. B. C.

D.5.某三棱錐的三視圖如圖所示,則該三棱錐的體積是()A. B. C. D.6.設(shè),“”,“”,則是的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.與曲線相切于處的切線方程是(其中是自然對數(shù)的底)()A. B. C. D.8.已知數(shù)列滿足(,且是遞減數(shù)列,是遞增數(shù)列,則A.B.C.D.9.設(shè)集合,分別從集合A和B中隨機抽取數(shù)x和y,確定平面上的一個點,記“點滿足條件”為事件C,則()A. B. C. D.10.學(xué)校選派位同學(xué)參加北京大學(xué)、上海交通大學(xué)、浙江大學(xué)這所大學(xué)的自主招生考試,每所大學(xué)至少有一人參加,則不同的選派方法共有A.540種 B.240種 C.180種 D.150種11.下列敘述正確的是()A.若命題“p∧q”為假命題,則命題“p∨q”是真命題B.命題“若x2=1,則x=1”的否命題為“若xC.命題“?x∈R,2x>0”的否定是“?xD.“α>45°”是“12.已知,,則是的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.己知冪函數(shù)在上單調(diào)遞減,則______.14.已知拋物線y2=4x的準(zhǔn)線與雙曲線x2a2-y215.已知數(shù)列的前項和,則__________.16.已知函數(shù),若方程有四個不相等的實根,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合(1)若,求實數(shù)的值;(2)若命題命題且是的充分不必要條件,求實數(shù)的取值范圍.18.(12分)設(shè),(為自然對數(shù)的底數(shù)).(1)記①討論函數(shù)單調(diào)性;②證明當(dāng)時,恒成立.(2)令設(shè)函數(shù)有兩個零點,求參數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系.(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線相交于兩點,求的值.20.(12分)為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:性別

是否需要志愿者

需要

40

30

不需要

160

270

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;(2)請根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)嗎21.(12分)已知遞增等比數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列為等差數(shù)列,且滿足,,求數(shù)列的通項公式及前10項的和;22.(10分)甲、乙兩名籃球運動員,甲投籃的命中率為0.6,乙投籃的命中率為0.7,兩人是否投中相互之間沒有影響,求:(1)兩人各投一次,只有一人命中的概率;(2)每人投籃兩次,甲投中1球且乙投中2球的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意得是方程的兩根,∴,∴.選B.2、D【解析】∵k>5.024,而在觀測值表中對應(yīng)于5.024的是0.025,∴有1-0.025=97.5%的把握認(rèn)為“X和Y有關(guān)系”,

故選D.3、B【解析】考點:絕對值不等式;函數(shù)恒成立問題.分析:要使不等式|x+2|-|x-1|>a恒成立,需f(x)=|x+2|-|x-1|的最小值大于a,問題轉(zhuǎn)化為求f(x)的最小值.解:(1)設(shè)f(x)=|x+2|-|x-1|,則有f(x)=,當(dāng)x≤-2時,f(x)有最小值-1;當(dāng)-2≤x≤1時,f(x)有最小值-1;當(dāng)x≥1時,f(x)=1.綜上f(x)有最小值-1,所以,a<-1.故答案為B.4、B【解析】通項公式:,令,解得,的系數(shù)為,故選B.【方法點晴】本題主要考查二項展開式定理的通項與系數(shù),屬于簡單題.二項展開式定理的問題也是高考命題熱點之一,關(guān)于二項式定理的命題方向比較明確,主要從以下幾個方面命題:(1)考查二項展開式的通項公式;(可以考查某一項,也可考查某一項的系數(shù))(2)考查各項系數(shù)和和各項的二項式系數(shù)和;(3)二項展開式定理的應(yīng)用.5、B【解析】由三視圖判斷底面為等腰直角三角形,三棱錐的高為2,則,選B.【考點定位】三視圖與幾何體的體積6、C【解析】

利用不等式的性質(zhì)和充分必要條件的定義進行判斷即可得到答案.【詳解】充分性:.所以即:,充分性滿足.必要性:因為,所以,.又因為,所以,即.當(dāng)時,,不等式不成立.當(dāng)時,,,不等式不成立當(dāng)時,,,不等式成立.必要性滿足.綜上:是的充要條件.故選:C【點睛】本題主要考查充要條件,同時考查了對數(shù)的比較大小,屬于中檔題.7、B【解析】

求出導(dǎo)函數(shù),把代入導(dǎo)函數(shù),可求出切線的斜率,根據(jù)的坐標(biāo)和直線的點斜式方程可得切線方程.【詳解】由可得,切線斜率,故切線方程是,即.故選B.【點睛】本題主要考查利用導(dǎo)數(shù)求曲線切線方程,屬于簡單題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點出的切線斜率(當(dāng)曲線在處的切線與軸平行時,在處導(dǎo)數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.8、D【解析】試題分析:由可得:,又是遞減數(shù)列,是遞增數(shù)列,所以,即,由不等式的性質(zhì)可得:,又因為,即,所以,即,同理可得:;當(dāng)數(shù)列的項數(shù)為偶數(shù)時,令,可得:,將這個式子相加得:,所以,則,所以選D.考點:1.裂項相消法求和;2.等比數(shù)列求和;9、A【解析】

求出從集合A和B中隨機各取一個數(shù)x,y的基本事件總數(shù),和滿足點P(x,y)滿足條件x2+y2≤16的基本事件個數(shù),代入古典概型概率計算公式,可得答案.【詳解】∵集合A=B={1,2,3,4,5,6},分別從集合A和B中隨機各取一個數(shù)x,y,確定平面上的一個點P(x,y),共有6×6=36種不同情況,其中P(x,y)滿足條件x2+y2≤16的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8個,∴C的概率P(C),故選A.【點睛】本題考查的知識點是古典概型概率計算公式,考查了列舉法計算基本事件的個數(shù),其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關(guān)鍵.10、D【解析】分析:按題意5人去三所學(xué)校,人數(shù)分配可能是1,1,3或1,2,2,因此可用分類加法原理求解.詳解:由題意不同方法數(shù)有.故選D.點睛:本題考查排列組合的綜合應(yīng)用,此類問題可以先分組再分配,分組時在1,2,2一組中要注意2,2分組屬于均勻分組,因此組數(shù)為,不是,否則就出錯.11、B【解析】

結(jié)合命題知識對四個選項逐個分析,即可選出正確答案.【詳解】對于選項A,“p∧q”為假命題,則p,q兩個命題至少一個為假命題,若p,q兩個命題都是假命題,則命題“p∨q”是假命題,故選項A錯誤;對于選項B,“若x2=1,則x=1”的否命題為“若x2對于選項C,命題“?x∈R,2x>0”的否定是“?x0∈R,對于選項D,若α=135°,則tanα<0,故“【點睛】本題考查了命題的真假的判斷,考查了學(xué)生對基礎(chǔ)知識的掌握情況.12、A【解析】分析:首先根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合冪的大小,得到指數(shù)的大小關(guān)系,即,從而求得,利用集合間的關(guān)系,確定出p,q的關(guān)系.詳解:由得,解得,因為是的真子集,故p是q的充分不必要條件,故選A.點睛:該題考查的是有關(guān)充分必要條件的判斷,在求解的過程中,首先需要判斷命題q為真命題時對應(yīng)的a的取值范圍,之后借助于具備真包含關(guān)系時滿足充分非必要性得到結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

先由冪函數(shù)的定義,得到,求出,再由題意,根據(jù)冪函數(shù)的單調(diào)性,即可得出結(jié)果.【詳解】因為為冪函數(shù),所以或,又在上單調(diào)遞減,由冪函數(shù)的性質(zhì),可得:,解得:,所以.故答案為:.【點睛】本題主要考查由冪函數(shù)單調(diào)性求參數(shù),熟記冪函數(shù)的定義,以及冪函數(shù)的單調(diào)性即可,屬于??碱}型.14、57【解析】分析:求得拋物線y2=4x的準(zhǔn)線為x=﹣1,焦點F(1,0),把x=﹣1代入雙曲求得y的值,再根據(jù)△FAB為正三角形,可得tan30°=2a1-a詳解:已知拋物線y2=4x的準(zhǔn)線為x=﹣1,焦點F(1,0),把x=﹣1代入雙曲線x2a2-再根據(jù)△FAB為正三角形,可得tan30°=33=2a1-故c2=34+4,∴c故答案為:573點睛:(1)本題主要考查橢圓、拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)求離心率常用的有直接法和方程法,本題利用的是直接法,直接先求a和c的值,再求離心率.15、64【解析】分析:由題意,根據(jù)數(shù)列的和的關(guān)系,求得,即可求解的值.詳解:由題意,數(shù)列的前項和為,當(dāng)時,,所以點睛:本題主要考查了數(shù)列中和的關(guān)系,其中利用數(shù)列的和的關(guān)系求解數(shù)列的通項公式是解答的關(guān)鍵,著重考查了推理與運算能力.16、【解析】

先由題意,得顯然不是方程的根;當(dāng)時,原方程可化為,令,,用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性,極值,確定函數(shù)的大致形狀,原方程有四個根,即等價于的圖象與直線有四個不同的交點,結(jié)合圖象,即可求出結(jié)果.【詳解】當(dāng),顯然不成立;當(dāng)時,由得,令,,即,則,方程有四個不相等的實根等價于的圖象與有四個不同的交點,當(dāng)時,,則,由得,由得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因此,函數(shù)的極小值為;當(dāng)時,,則,由得;由得;所以在上單調(diào)遞減,在上單調(diào)遞增,因此函數(shù)的極大值為.畫出函數(shù)的大致圖象如下:由圖象可得,只需.故答案為:.【點睛】本題主要考查由函數(shù)零點個數(shù)求參數(shù)的問題,熟記分段函數(shù)的性質(zhì),導(dǎo)數(shù)的方法判斷函數(shù)的單調(diào)性,求函數(shù)的極值等,靈活運用數(shù)形結(jié)合的方法求解即可,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)或.【解析】分析:(1)分a>0和a<0兩種情況討論是否存在滿足條件的實數(shù)a的值,綜合討論結(jié)果,可得答案;(2)若p是q充分不必要條件,則A?B,分類討論,可得滿足條件的a的取值范圍.詳解:(1)當(dāng)時當(dāng)時顯然故時,,(2)當(dāng)時,則解得當(dāng)時,則綜上是的充分不必要條件,實數(shù)的取值范圍是或.點睛:注意區(qū)別:“命題是命題的充分不必要條件”與“命題的充分不必要條件是命題”18、(1)①在為減函數(shù),在上為增函數(shù)②見證明;(2)【解析】

(1)①對函數(shù)求導(dǎo),判斷其單調(diào)性即可。②轉(zhuǎn)化成證明的問題,從而證明在時的最小值大于0。(2)首先對求導(dǎo)數(shù),討論其單調(diào)性,結(jié)合圖像即可得到有兩個零點時的取值范圍。【詳解】(1)①由題意得所以因為所以當(dāng)時為增函數(shù),當(dāng)時為減函數(shù)②證明:當(dāng)時,恒成立,等價于證明當(dāng)時,恒成立。因為,因為,則。因為,所以,所以在上為增函數(shù)。因為,所以在上為增函數(shù)。又因為,所以(2)當(dāng)時,為增函數(shù)。,為減函數(shù)。有兩個零點當(dāng)時,令當(dāng)時在和上為增函數(shù),在上為減函數(shù)。此時有三個零點(舍棄)當(dāng)同理可得有三個零點(舍棄)當(dāng)時,,此時有兩個零點。綜上所述【點睛】本題主要考查了根據(jù)導(dǎo)數(shù)判斷單調(diào)性以及函數(shù)恒成立問題,在解決第二問函數(shù)零點問題時,轉(zhuǎn)化成判斷函數(shù)單調(diào)性以及極值的問題。屬于難題。19、(Ⅰ)直線的參數(shù)方程為(為參數(shù))極坐標(biāo)方程為()(Ⅱ)5【解析】

(Ⅰ)直線的普通方程為,可以確定直線過原點,且傾斜角為,這樣可以直接寫出參數(shù)方程和極坐標(biāo)方程;(Ⅱ)利用,把曲線的參數(shù)方程化為普通方程,然后把直線的參數(shù)方程代入曲線的普通方程中,利用根與系數(shù)的關(guān)系和參數(shù)的意義,可以求出的值.【詳解】解:(Ⅰ)直線的參數(shù)方程為(為參數(shù))極坐標(biāo)方程為()(Ⅱ)曲線的普通方程為將直線的參數(shù)方程代入曲線中,得,設(shè)點對應(yīng)的參數(shù)分別是,則,【點睛】本題考查了直線的參數(shù)方程化為普通方程和極坐標(biāo)方程問題,同時也考查了直線與圓的位置關(guān)系,以及直線參數(shù)方程的幾何意義.20、(1);(2)有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān).【解析】試題分析:(1)由列聯(lián)表可知調(diào)查的500位老年人中有位需要志愿者提供幫

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論