版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TheRoleofLow-CarbonFuelsintheCleanEnergyTransitionsofthePowerSectorTheRoleofLow-CarbonFuelsintheCleanEnergyTransitionsofthePowerSectorINTERNATIONALENERGYAGENCYTheIEAexaminesthefullspectrumofenergyissuesIEAmembercountries:IEAassociationcountries:includingoil,gasandcoalsupplyandAustraliaAustriaBelgiumCanadaCzechRepublicDenmarkEstoniaFinlandFranceGermanyGreeceBrazilChinademand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinitsIndiaIndonesiaMoroccoSingaporeSouthAfricaThailandHungaryIrelandItalyJapan30membercountries,8associationcountriesandbeyond.KoreaLuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSpainPleasenotethatthispublicationissubjecttospecificrestrictionsthatlimititsuseanddistribution.ThetermsandconditionsareavailableonlineatSwedenSwitzerlandTurkeyUnitedKingdomUnitedStates/t&c/Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.TheEuropeanCommissionalsoparticipatesintheworkoftheIEASource:IEA.Allrightsreserved.InternationalEnergyAgencyWebsite:Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorAbstractAbstractGovernmentsaroundtheworldarefacedwiththechallengeofensuringelectricitysecurityandmeetinggrowingelectricityuseswhilesimultaneouslycuttingemissions.Thesignificantincreaseinrenewablesandelectrificationofend-usesplaysacentralroleincleanenergytransitions.However,duetothevariablenatureofsolarPVandwind,asecureanddecarbonisedpowersectorrequiresotherflexibleresourcesonamuchlargerscalethancurrentlyexiststoday.Theseincludelow-carbondispatchablepowerplants,energystorage,demandresponseandtransmissionexpansion.Theavailabilityandcostofthesetechnologiesdependsonlocalconditions,socialacceptanceandpolicies.Thepossibilitytocombusthighsharesoflow-carbonhydrogenandammoniainfossilfuelpowerplantsprovidescountrieswithanadditionaltoolfordecarbonisingthepowersector,whilesimultaneouslymaintainingallservicesoftheexistingfleet.Therelevanttechnologiesareprogressingrapidly.Co-firingupto20%ofammoniaandover90%ofhydrogenhastakenplacesuccessfullyatsmallpowerplants,andlarger-scaletestprojectswithhigherco-firingratesareunderdevelopment.Ultimately,usinglargevolumesoflow-carbonhydrogenandammoniainthepowersectorwillhelpestablishsupplychainsanddrivedowncoststhrougheconomiesofscaleandtechnologicalimprovements,therebycomplementingandmutuallyreinforcingtheuseoflow-carboninfuelsinotherhard-to-abatesectorssuchaslong-haultransportandindustry.PAGE|3Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorAcknowledgementsAcknowledgements,contributorsandcreditsThisstudywaspreparedbyacross-agencyworkinggroupdrawnfromseveraldirectoratesoftheIEA.ThestudywasdesignedanddirectedbyPaoloFrankl(HeadoftheRenewableEnergyDivision).Theanalysisandproductionofthereportwereledandco-ordinatedbyIlkkaHannula.TheworkbenefittedfromstrategicguidancebyKeisukeSadamori(DirectorofEnergy,MarketsandSecurity).Themaincontributorswere:IlkkaHannula,PaoloFrankl,NielsBerghout,KeithEverhart,PeerapatVithayasrichareon,LuisLopezandSaraBudinis.OtherIEAcolleagueswhomadecontributionstothisworkinclude(inalphabeticalorder):JulienArmijo,ElisaAsmelash,JoseBermudezMenendez,CarlosFernandezAlvarez,AlexandreGouy,AsthaGupta,TakuHasegawa,CesarAlejandroHernandez,ZoeHungerford,JavierJorquera,RandiKristiansen,PeterLevi,RaimundMalischek,SamanthaMcCulloch,GergelyMolnar,TomasdeOliveiraBredariol,UweRemme,NicoleThomasandBrentWanner.Thereportbenefittedalsofromcontributionsfromfollowingexternalconsultants:AlfonsoChinnici(UniversityofAdelaide),GrahamJ.Nathan(UniversityofAdelaide),andCédricPhilibert(IFRI)Valuablecomments,feedbackandguidancewereprovidedbyotherseniormanagement,includingKeisukeSadamori,PeterFraser,AadvanBohemenandTimurGül.ThispublicationwasproducedwiththesupportoftheJapaneseMinistryofEconomy,TradeandIndustry(METI).WeappreciatethecontributionsofspeakersattheIEAonlineworkhopthe“Roleoflow-carbonhydrogenandammoniaindecarbonisingthepowersector”heldinApril2021(inalphabeticalorder):MohitBhargavaTobiasBirweNTPCRenewableEnergyThyssenKruppEnelPaolaBrunettoAndrewDicksonToshiroFujimoriCWPGlobalIHIPAGE|4Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorAcknowledgementsJitendraGuptaShellAhmadAlKhowaiterThierryLepercqTorbenN?rgaardSaudiAramcoHyDealM?rskMc-KinneyM?llerCenterforZeroCarbonShippingAkihikoTaniguchiJERASammyVanDenBroeckStephanieQueenYaraCleanAmmoniaGEPowerTheIEAwouldalsoliketothankthefollowingexpertswhoprovidedessentialinputstotheunderlyinganalyticalworkandreviewedthereport:KenjiAkiyoshiInpexCorporationSiemensGamesaIRENAHenrikBachMortensenHeribBlancoJohnB?gildHansenPaolaBrunettoHaldorTops?eEnelJoseChavesComillasPontificalUniversityDepartmentScienceandTechnology,SouthAfricaCosmasChitemeFernandodeSisternesGniewomirFlisToshiroFujimoriTimoGerresWorldBankAgoraEnergiewendeIHIUniversidadPontificiaComillasSolarPowerEuropeIEAHydrogenTCPUSDOEWalburgaHemetsbergerMarinaHolgadoAyakaJonesEmmanouilKakarasJohnLauMitsubishiHeavyIndustriesEMEAIndependentexpertEnagasPharoahLeFeuvreFranzLehnerNOWThierryLepercqPaulLuccheseHyDealCEA&IEAHydrogenTCPNaturalResourcesCanadaEnelFoundationLauraMartinGiuseppeMontesanoSamMurakiTokyoGasManabuNabeshimaCarloNapoliMinistryofForeignAffairs,JapanEnelFoundationYasushiNinomiyaDariaNochevnikInstituteofEnergyEconomics,JapanHydrogenCouncilPAGE|5Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorAcknowledgementsTorbenNorgaardM?rskMc-KinneyM?llerCenterforZeroCarbonShippingIEABioenergyTCPIFRILucPelkmansCédricPhilibertAttilioPigneriH2U-TheHydrogenUtilityVattenfallTobiasRehnholmHisahideOkudaDavidReinerJERAUniversityofCambridgeJudgeBusinessSchoolSnamXavierL.RousseauNicolo’SartoriEnelFoundationEPRIRobertSteeleToshiyukiSudaEmanueleTaibiHeinovonMeyerMasashiWatanabeIHIIRENAInternationalPtXHubMinistryofEconomy,TradeandIndustry,JapanAkiraYabumotoDeepakYadavJ-PowerCEEW–Councilonenergy,environmentandwaterM?rskMc-KinneyM?llerCenterforZeroCarbonShippingMadsZachoThanksalsototheIEACommunicationsandDigitalOffice(CDO)fortheirhelpinproducingthepublication,especiallytoJadMouawad,HeadofCDO,AstridDumond,MariamAliabadiandThereseWalsh.WethankElspethThomsonforcopy-editingthemanuscript.PAGE|6Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorExecutivesummaryExecutivesummaryUsinglow-carbonhydrogenandammoniainfossilfuelpowerplantscanplayanimportantroletohelpensureelectricitysecurityincleanenergytransitionsGovernmentsaroundtheworldarefacedwiththechallengeofensuringelectricitysecurityandmeetinggrowingelectricityuseswhilesimultaneouslycuttingemissions.Thesignificantincreaseinrenewablesandelectrificationofend-usesplaysacentralroleincleanenergytransitions.However,duetothevariablenatureofsolarPVandwind,asecureanddecarbonisedpowersectorrequiresotherflexibleresourcesonamuchlargerscalethancurrentlyexiststoday.Theseincludelow-carbondispatchablepowerplants,energystorage,demandresponseandtransmissionexpansion.Theavailabilityandcostofthesetechnologiesdependsonlocalconditions,socialacceptanceandpolicies.Thermalgenerationisthelargestsourceofpowerandheatintheworldtoday,alsoprovidingkeyflexibilityandothersystemservicesthatcontributetothesecurityofelectricitysupply.Theseplantsarealsolong-lasting:By2030,79%ofthecoalandgas-firedplantsinadvancedeconomieswillstillhaveusefultechnicallife,beforedecliningto43%in2040.Inemergingeconomies,duetorecentinvestments,thesefiguresare83%in2030and61%in2040.Countriesthatrelystronglyonfossilfuel-basedpowergenerationwillberequiredtomakeverysignificanteffortstoachievedecarbonisationobjectivestocomplywiththeParisAgreementorNetZerotargets,whereapplicable.Thepossibilitytocombusthighsharesoflow-carbonhydrogenandammoniainfossilfuelpowerplantsprovidescountrieswithanadditionaltoolfordecarbonisingthepowersector,whilesimultaneouslymaintainingallservicesoftheexistingfleet.Therelevanttechnologiesareprogressingrapidly.Co-firingupto20%ofammoniaandover90%ofhydrogenhastakenplacesuccessfullyatsmallpowerplants,andlarger-scaletestprojectswithhigherco-firingratesareunderdevelopment.Thevalueoflow-carbonfuelsinthepowersectordependsonsystemcontextsandregionalconditionsThevalueoflow-carbondispatchablepowercapacitydependsonseveralvariables,suchasmarketdesign,availabilityofotherflexibilityoptions,energymixandthepriceofcarbon,whichcanvarygreatlyacrossregions.By2030,thermalpowerplantsusinglow-carbonfuelscouldplayagrowingroleasadispatchableresourceforcoveringpeakdemandperiodswhenthevalueofPAGE|7Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorExecutivesummarytheproducedelectricityishigh,andforprovidingarangeofsystemservicestoensureenergysecurityandcapacityadequacytoavoidcostlydisruptionsintheenergysupply.Forexample,dispatchablethermalpowerplantsinIndiaareexpectedtoprovide40%ofenergy,50%ofsysteminertia,almost60%ofpeakcapacityandover70%oframpingflexibilityservicesintheIEASustainableDevelopmentScenario(SDS)by2030.Low-carbonfuelscanplayanespeciallyimportantroleincountriesorregionswherethethermalfleetisyoung,orwhentheavailabilityoflow-carbondispatchableresourcesisconstrained.Inthesesettings,theycanallowexistingassetstocontinueoperatingevenwhenclimateregulationsaretightened,therebydiminishingtheriskofcreatingstrandedassets.ThisisparticularlythecaseintheEastandSoutheastAsia.Thisreportprovidesadetailedassessmentofthreesupplychaincategoriesforusinglow-carbonhydrogenandammoniainthepowersectorin2030:importinglow-carbonfuelstoanadvancedeconomy(Japan);importinglow-carbonammoniatoanemergingeconomy(Indonesia);andusingdomesticallyproducedlow-carbonhydrogeninanemergingeconomy(India).Productioncostsoflow-carbonfuelsmustdecreasefurtherNaturalgaswithcarboncapture,utilisationandstorage(CCUS)iscurrentlythelowest-costproductionrouteforlow-carbonfuels.Costestimatesfor2030aregenerallyintherangeofUSD8-16/GJ(USD0.9-1.9/kg)forhydrogenandUSD12-24/GJ(USD230-440/t)forammoniainregionswithaccesstolow-costnaturalgasandavailabilityofCO2storage.Productioncostsfortheelectrolyticroutearedecreasingrapidlyduetocontinuingreductionsinthecostofrenewableelectricityandeconomiesofscaleinelectrolysermanufacturing.By2030,costsareestimatedtobeintherangeofUSD13-19/GJ(USD1.5-2.2/kg)forhydrogenand22-33/GJ(USD400-620/tNH3)forammoniainregionswithexcellentwindandsolarresources.By2030thecostoflow-carbonhydrogenandammoniaforuseaschemicalfeedstockbecomescomparabletothoseofunabatedproductionfromfossilfuels.However,foruseasafuel,theyareexpectedtoremainsignificantlymoreexpensivethanprojectedpricesofcoalandnaturalgasin2030intheSDS.PAGE|8Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorExecutivesummaryFullvaluechains,includingtransportandstorage,mustbeconsideredwhencomparingthecostofusinglow-carbonfuelsfromdifferentsourcesAnextensivetransportandstorageinfrastructureisaprerequisiteforestablishingglobalvaluechains,andconnectinglow-costproductionregionswithusersoflow-carbonfuels.Transmissionofhydrogenandammoniaviapipelinesisamaturetechnologyandrepresentsarelativelysmallproportionoftheoverallsupplycost.Intercontinentalammoniatransportisalsowelldeveloped,relyingonchemicalandsemi-refrigeratedliquefiedpetroleumgas(LPG)tankers.Formarinetransport,hydrogencanbeliquefiedinamannersimilartowhatisdonefornaturalgas.However,liquefactionisaveryenergy-andcapital-intensiveprocess.Transportingfuelsviashippingoveradistanceof10000kmisestimatedtocostUSD14-19/GJforliquidhydrogen,whileitisonlyUSD2-3/GJforammonia.Theresultingtotalsupplyprojectedcostsin2030,includingproductionandmarinetransport,arerespectivelyUSD22-35/GJ(USD2.6-4.2/kg)forhydrogenandUSD14-27/GJ(USD260-500/t)forammonia.Theuseoflow-carbonfuelsinfossilfuelpowerplantsmustleadtosignificantandmeasurablelife-cycleemissionreductionsSubstantialgreenhousegas(GHG)life-cycleemissionsreductionscanbeachievedbysubstitutingfossilfuelswithlow-carbonhydrogenandammoniainthermalpowerplants.Indicatively,switchingfromnaturalgas-basedpowergenerationtohydrogenderivedfromfossilfuelswith95%CO2capturedeliversabout70%GHGreduction,whileelectrolytichydrogenfromrenewablesreducesemissionsby85-95%.Similarly,switchingfromcoal-basedpowergenerationtolow-carbonammoniadeliversabout80%reductioninemissionswhenammoniaisproducedfromfossilfuelswith95%CO2capture,and90-95%whenammoniaisproducedfromwindandsolar.TherearecurrentlynointernationallyagreedrulesorstandardsonthemaximumallowableGHGemissionsassociatedwiththeproductionofhydrogenand/orhydrogen-derivedfuels.InthecaseoftheCCUSroute,suchstandardswoulddictateminimumeligibleCO2captureratesandplacelimitsonthemaximumallowableupstreamemissions.Atthesametime,suchrulesandstandardsarealsorelevantforelectrolysersifgridelectricityisused,asthepowermixwillsignificantlyinfluencelife-cycleemissions.Goingforward,standardsareneededtocreateend-userconfidencetowardsfuelsthatarecarbon-freeatthepointofconsumption,butmightproducesignificantPAGE|9Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorExecutivesummaryGHGemissionsduringproduction,transportandfinaldistribution.Forexample,switchingfromcoaltounabatedfossilammoniacandoublelife-cycleGHGemissions,andeventripletheminthecaseofswitchingfromnaturalgastounabatedfossilhydrogen.Aversatilemixofsupplyroutesforlow-carbonfuelswillenhancediversificationandsecurityofsupplywhilecontributingtocostpredictabilityAdiversemixofsupplylocationsandtechnologiescanhelpensuresecuresuppliesshouldproducersstruggletomeetrapidlygrowingdemand.Costsforrenewablesandtheelectrolyticroutearemorepredictableandcanhelptobalancepossibledisruptionsinthesupplyandpriceswingsofnaturalgasandcoal,whichaffecttheproductioncostsofthefossilfuelwithCCUSroute.Low-carbonhydrogenandammoniaproductioncanbekickstartedinplaceswhereproductioncanbuildonexistinginfrastructureanddemand.TherearealsopossibilitiestointegratetheelectrolyticandfossilfuelwithCCUSprocessesintoahybridplantthatcanofferincreasedefficiencyandpotentiallylowercapitalinvestmentrequirements.Ifthebiomassfeedstockissustainablyproduced,carbon-negativehydrogenandammoniacanbeproducedbycapturingby-productCO2fromabiomassconversionplant,aparticularlyinterestingoptioninhigh-pricecarbonjurisdictions.Theoverallstrategiesandpoliciestoincentivelow-carbonfuelsshouldbekeptopenfordifferenttechnologyoptionsaslongasbasicsustainabilitycriteriaaremet.Thisislikelytoincreasecompetitionandacceleratecostreductions,whileincreasingdiversificationandsecurityofsupply.AportfolioofpoliciesisrequiredtocompensateforcostgapsandfosterusesthatmaximisesystemvalueBy2030,low-carbonhydrogenandammoniaarelikelytoremainexpensiveenergycarriersforpowergeneration.However,inJapanthegapbetweenthegenerationcostandthevalueoftheproducedelectricityismoderatedbythewholesaleelectricitymarketthatallowshigherpricesduringpeakdemandperiods,andbythehighcarbonpriceassumedintheSDSforadvancedeconomiesby2030.Ouranalysissuggeststhatco-firing60%oflow-carbonammoniainaJapanesecoalpowerplantin2030wouldleadtoagenerationcostthatis30%higherthanenergymarketvalueinbaseload,butjust15%higherinpeakloadconditions.Inaddition,thesegeneratorswillbeabletocompeteonJapan’scapacitymarket,strivingforanadditionalsourceofrevenue.Bycontrast,usingthesamelow-carbonammoniainIndonesiawouldleadtoafour-foldincreaseinPAGE|10Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorExecutivesummarygenerationcostscomparedwiththevariableoperatingcostsofacoalpowerplant.Theimpactwouldbefullyfeltduetotheabsenceofbothawholesaleelectricitymarketandacarbonprice.Tosupporttheuseoflow-carbonfuelsinthepowersector,electricitymarketsshouldberedesignedtorewardflexibility,capacityandothersystemservicecontributionsprovidedbylow-carbonthermalpowerplants.Thiscouldbeaccompaniedbysupportmeasuressuchascarbonpricingand/orothercomplementarypolicies,aswellasregulatoryframeworkstofurtherdecreasetheremainingcostgapwithincumbentgeneration.Supportmeasuresshouldbetailoredtowardscost-effectivesystemintegrationandmaximisingthevalueoflow-carbondispatchablegeneration.Theyshouldalsoaimatfosteringcompetitionandimprovingenvironmentalperformanceovertime.Inanycase,givenexpectationsofincreasedcompetitionfromotherformsoflow-carbondispatchableresourcesandotherflexibilityandstorageoptions,aswellasfrompossibleretrofittingoffossilfuelplantswithCCUS,thefeasibilityandcompetitivenessoflow-carbonthermalpowerplantswillneedtobecontinuouslyandcarefullyassessed.Developingmarketsforlow-carbonfuelsandtheirsupplychainsby2030willestablishsignificantopportunitiesinmanycountriesandeconomicsectorsItisvitalthateconomieswithstrongdriversforusinglow-carbonfuelssuccessfullycreatedemand,bringdowncostsandstabilisevaluechainsby2030.Onlytheirsuccesswillopenupopportunitiestoexpandlow-carbonfueluseinemerginganddevelopingeconomies.Thisisparticularlyrelevantforcountrieswithyoungfossilfuelfleets,afterhavingimplementedandutilisedmostoftheirexistingflexibilityresources,suchasgridsandinterconnections,storageanddemand-sideresponse.Forexample,low-carbonfuelsuseisapossiblelong-termoptionforemergingeconomiesinSoutheastAsia.Powersystemsinthisregionalreadyhaveconsiderableotherlatentflexibilitythatcanbeactivatedbytargetedpolicymeasurestoaddressflexibilityneedsintheshortterm,whileinthelongertermthereareopportunitiesforusinglow-carbonfuelsintheexistingthermalpowerplantfleet.Displacingmeaningfulamountsoffossilfuelsfrompowergenerationwillrequireamajorexpansionofthesupplyinfrastructure.Thisimpliesnotjustmassiveinvestmentsbutalsoconcertedandcoordinatedeffortsacrossmanystakeholders,includingdulyaddressinghealth&safetyrisksrelatedtothehandlingofhydrogenandammonia.PAGE|11Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorExecutivesummaryElectrolyserandhydrogentransportcapacityespeciallyneedtomassivelyexpandmanytimesovertheircurrentsize.Despitealreadybeingwidelytraded,transportvolumesofammoniaarealsosmallincomparisontotheneedsofthepowersector.Forexample,co-firing60%ofammoniainacoalpowerplantfleetofjust10GWe–about10largecoalplants--wouldmobiliseanamountalmostequivalenttothetotalammoniatradedworldwidetoday.Whiletheexpansionofthesupplyinfrastructureisaconditiontodevelopmarketsforlow-carbonhydrogenandammoniainthepowersector,itisalsoanimportantinvestmentopportunity.Ultimately,usinglargevolumesoflow-carbonhydrogenandammoniainthepowersectorwillhelpestablishsupplychainsanddrivedowncoststhrougheconomiesofscaleandtechnologicalimprovements,therebycomplementingandmutuallyreinforcingtheuseoflow-carboninfuelsinotherhard-to-abatesectorssuchaslong-haultransportandindustry.PAGE|12Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorChapter1.TheroleofthermalgenerationincleanenergytransitionChapter1.TheroleofthermalgenerationincleanenergytransitionHighlights
Thermalpowerplantshavesuppliedthebulkofincreasingelectricitydemandinthelasttwodecades,particularlyinChinaandemergingeconomies.Thecapacityoftheworldwidefleetofcoalandgasplantsdoubledfrom2000to2019,from1.8TWto3.7TW.Morethanhalfoftheseplantshavebeeninservicesince2005,andmorethanhalfofthoseinChinahavebeeninservicesince2008.InIndia,plantswhichhavebeeninservicesince2012comprisemorethanhalfofthefleet.
Theseplantshavetechnicallifetimesthatextendwellintothefuture.By2030,79%ofthecoalandgas-firedplantsintheadvancedeconomieswillstillhaveusefultechnicallife,beforedecliningto43%in2040.Intheemergingeconomies,duetotheamountofrecentinvestmentsincoalandgas-firedcapacity,thesefiguresare83%in2030and61%in2040.ButtheemissionsfromcoalandnaturalgasusemustbereduceddrasticallyinordertoalignwiththeobjectivesoftheParisAgreementand–whereapplicable–withmorerecentNetZerocountrypledges.Alongsideusinglesscoalandgasbyoperatingtheplantsatlowerutilisationratesorbyretiringthemearly,theotherpathwaytoreduceemissionsistoretrofittheplantstogeneratewithlow-carbonfuelsortocaptureandstorethecarbonemissions.Anumberoffactors,includingthepaceofcostreductionsinthetechnologies,renewableenergyresourcepotentialandgeographiclocation,willdrivethebalancebetweenthetwopathways.
Meanwhile,massiveexpansionofsolarPVandwindisrapidlytransformingpowersystemsacrosstheworld,callingforaprofoundtransformationinthewaythatthesesystemsareplannedandoperatedtomaintainelectricitysecurity.IntheSDS,VREwillneedtoincreaserapidlyintheadvancedeconomies,risingfrom11%oftotalenergyin2019to50%in2040.Intheemergingeconomies,thissharewillriseevenmorerapidly,from6%in2019to43%in2040.Duetotheirvariablenature,ineveryregion,thisgrowthinVREgenerationwillentailasignificantincreaseintheneedforflexibilityfromothersourcesofsupplyanddemandinthepowersystem.
Low-carbonretrofittingofthermalpowerplantswouldallowthere-useofexistingassetsandtheirassociatedinfrastructureinthefutureaslow-emissionsourcesoffirmcapacity.Thermalplantscanbalancethevariabilityofwindandsolargenerationinthepowersystembygeneratingwhenthoseresourcesareunavailable,orbyadjustingupordownbasedoninstantaneousorhourlyanddailyfluctuationsinVREoutput.Therotationalmassofthermalplantssuppliesinertiawhichhelpsmaintainfrequencyforsecureoperationofthepowersystem.Currently,gasandcoal-firedgenerationaccountsforoverhalfofcurrentflexibilitycapacityglobally.Dispatchablepowerplantswilllikelycontinuetocontributetoelectricitysecurityinregionswithlargethermalfleets,inparticularthosewithlimitedotheroptions:intheSDSinJapanandASEAN,dispatchablecapacityisalmostequaltovariablerenewablecapacitystillby2040.PAGE|13Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersectorChapter1.TheroleofthermalgenerationincleanenergytransitionThepowersectorisinrapidtransformationThermalgeneration,firedmainlybycoalandnaturalgas,dominatestoday’spowersystems.Fossil-basedthermalgenerationhashistoricallybeentheoneofthecheapestsourcesofelectricity,butitisalsodispatchableandflexible–itcansustainitsoutputoverlongperiodsandrespondtoexpectedandunexpectedchangestodemandandothergenerationsources.Thermalgenerationisthereforeabletocontributeaveryhighshareofitsinstalledcapacitytowardsmeetingpeakdemand,orsystemadequacy.Thermalgenerationalsoprovideskeysystemservicesinmeetingflexibilityneedsparticularlyinertia,akeysourceofgridstability,throughtherotatingmassofitsturbines.However,theresultingemissionsfromtheunabateduseofcoalandnaturalgasinthermalgenerationmustbereduceddrasticallyinordertoalignwiththeobjectivesoftheParisAgreementand–whereapplicable–withmorerecentnetzeropledges.Windandsolargenerationwillneedtoreplacethebulkofemissions-producingfossilfuelsduringthetransitiontocleanerpowersystems,risingrapidlyfrom7percentofelectricitygenerationin2019to29percentin2030and45percentin2040globallyintheSustainableDevelopmentScenario(SDS).Thiswillrequirepowersystemstoincreasesourcesofflexibilityinordertorespondtovariabilityanduncertaintyofthesesources.Investmentsinlarge-scaletransmissionnetworkupgradesandmeasurestoincreasedemand-sideflexibilitywillbeneeded.Investmentsintechnologiesthatprovidekeysystemserviceslike,likebatterystorageandlow-carbondispatchableenergytechnologies,willalsoberequired.Governm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公共設(shè)施窗簾清洗消毒服務(wù)合同范本3篇
- 2024版汽車檢測臺租賃合同
- 2024石材外墻干掛勞務(wù)服務(wù)合同標(biāo)準(zhǔn)版6篇
- 2025年度特色飲品店門面房租賃及新品研發(fā)合同3篇
- 2025年度圓形冷卻塔能源管理服務(wù)合同4篇
- 2024版基礎(chǔ)建設(shè)融資借款協(xié)議模板版
- 2025年度水電工程質(zhì)保期服務(wù)合同4篇
- 2025年度學(xué)校圖書館窗簾升級改造合同4篇
- 2025年度生態(tài)修復(fù)工程承包樹木合同協(xié)議書4篇
- 2024石材行業(yè)品牌推廣與營銷合同3篇
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對象登記表(樣表)
- 主管部門審核意見三篇
- 初中數(shù)學(xué)校本教材(完整版)
- 父母教育方式對幼兒社會性發(fā)展影響的研究
- 新課標(biāo)人教版數(shù)學(xué)三年級上冊第八單元《分?jǐn)?shù)的初步認(rèn)識》教材解讀
- (人教版2019)數(shù)學(xué)必修第一冊 第三章 函數(shù)的概念與性質(zhì) 復(fù)習(xí)課件
- 重慶市銅梁區(qū)2024屆數(shù)學(xué)八上期末檢測試題含解析
評論
0/150
提交評論