




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GlobalHydrogenReview2021INTERNATIONALENERGYAGENCYTheIEAexaminesthefullspectrumofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits30membercountries,8associationcountriesandbeyond.IEAmembercountries:AustraliaAustriaBelgiumCanadaCzechRepublicDenmarkEstoniaFinlandFranceSpainSwedenSwitzerlandTurkeyUnitedKingdomUnitedStatesIEAassociationcountries:BrazilChinaIndiaIndonesiaMoroccoGermanyGreeceHungaryPleasenotethatthispublicationissubjecttospecificrestrictionsthatlimititsuseanddistribution.Thetermsandconditionsareavailableonlineat/t&c/IrelandItalyJapanKoreaLuxembourgMexicoSingaporeSouthAfricaThailandThispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.NetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSource:IEA.Allrightsreserved.InternationalEnergyAgencyWebsite:ExecutivesummaryGlobalHydrogenReview2021ExecutivesummaryPAGE|4ExecutivesummaryGlobalHydrogenReview2021ExecutiveSummaryAfterseveralfalsestarts,anewbeginningaroundthecornerupto54GWby2030.Another40projectsaccountingformorethan35GWofcapacityareinearlystagesofdevelopment.Ifallthoseprojectsarerealised,globalhydrogensupplyfromelectrolyserscouldreachmorethan8Mtby2030.Whilesignificant,thisisstillwellbelowthe80MtrequiredbythatyearinthepathwaytonetzeroCO2emissionsby2050setoutintheIEARoadmapfortheGlobalEnergySector.Thetimeisripetotapintohydrogen’spotentialcontributiontoasustainableenergysystem.In2019,atthetimeofthereleaseoftheIEA’slandmarkreportTheFutureofHydrogenfortheG20,onlyFrance,JapanandKoreahadstrategiesfortheuseofhydrogen.Today,17governmentshavereleasedhydrogenstrategies,morethan20governmentshavepubliclyannouncedtheyareworkingtodevelopstrategies,andnumerouscompaniesareseekingtotapintohydrogenbusinessopportunities.Sucheffortsaretimely:hydrogenwillbeneededforanenergysystemwithnetzeroemissions.IntheIEA’sNetZeroby2050:ARoadmapfortheGlobalEnergySector,hydrogenuseextendstoseveralpartsoftheenergysectorandgrowssixfoldfromtoday’slevelstomeet10%oftotalfinalenergyconsumptionby2050.Thisisallsuppliedfromlow-carbonsources.Europeisleadingelectrolysercapacitydeployment,with40%ofglobalinstalledcapacity,andissettoremainthelargestmarketintheneartermonthebackoftheambitioushydrogenstrategiesoftheEuropeanUnionandtheUnitedKingdom.
Australia’splanssuggestitcouldcatchupwithEuropeinafewyears;LatinAmericaandtheMiddleEastareexpectedtodeploylargeamountsofcapacityaswell,inparticularforexport.ThePeople’sRepublicofChina(“China”)madeaslowstart,butitsnumberofprojectannouncementsisgrowingfast,andtheUnitedStatesissteppingupambitionswithitsrecentlyannouncedHydrogenEarthshot.Hydrogensuppliesarebecomingcleaner…tooslowlyHydrogendemandstoodat90Mtin2020,practicallyallforrefiningandindustrialapplicationsandproducedalmostexclusivelyfromSixteenprojectsforproducinghydrogenfromfossilfuelswithcarboncapture,utilisationandstorage(CCUS)areoperationaltoday,producing0.7Mtofhydrogenannually.Another50projectsareunderdevelopmentand,ifrealised,couldincreasetheannualhydrogenproductiontomorethan9Mtby2030.CanadaandtheUnitedStatesleadintheproductionofhydrogenfromfossilfuelswithCCUS,withmorethan80%ofglobalcapacityproduction,althoughtheUnitedfossilfuels,resultingincloseto900MtofCO2emissions.Butthereareencouragingsignsofprogress.Globalcapacityofelectrolysers,whichareneededtoproducehydrogenfromelectricity,doubledoverthelastfiveyearstoreachjustover300MWbymid-2021.Around350projectscurrentlyunderdevelopmentcouldbringglobalcapacityPAGE|5ExecutivesummaryGlobalHydrogenReview2021KingdomandtheNetherlandsarepushingtobecomeleadersinthefieldandaccountforamajorpartoftheprojectsunderdevelopment.startattheendof2021.Severalprojectsatascaleoftensofkilotonnesofhydrogenareexpectedtobecomeoperationaloverthenexttwotothreeyears.Demonstrationprojectsforusinghydrogeninindustrialapplicationssuchascement,ceramicsorglassmanufacturingarealsounderdevelopment.ExpandingthereachofhydrogenuseHydrogencanbeusedinmanymoreapplicationsthanthosecommontoday.Althoughthisstillaccountsforasmallshareoftotalhydrogendemand,recentprogresstoexpanditsreachhasbeenstrong,particularlyintransport.Thecostofautomotivefuelcellshasfallenby70%since2008thankstotechnologicalprogressandgrowingsalesoffuelcellelectricvehicles(FCEVs).ThankstotheeffortsbyKorea,theUnitesStates,ChinaandJapan,thenumberofFCEVsontheroadgrewmorethansixfoldfrom7000in2017toover43000bymid-2021.In2017,practicallyallFCEVswerepassengercars.Today,one-fiftharebusesandtrucks,indicatingashifttothelong-distancesegmentwherehydrogencanbettercompetewithelectricvehicles.However,thetotalnumberofFCEVsisstillwellbelowtheestimated11millionelectricvehiclesontheroadtoday.Severaldemonstrationprojectsfortheuseofhydrogen-basedfuelsinrail,shippingandaviationarealreadyunderdevelopmentandareexpectedtoopennewopportunitiesforcreatinghydrogendemand.GovernmentsneedtoscaleupambitionsandsupportdemandcreationCountriesthathaveadoptedhydrogenstrategieshavecommittedatleastUSD37billion;theprivatesectorhasannouncedanadditionalinvestmentofUSD300billion.Butputtingthehydrogensectorontrackfornetzeroemissionsby2050requiresUSD1200billionofinvestmentinlow-carbonhydrogensupplyandusethroughto2030.Thefocusofmostgovernmentpoliciesisonproducinglow-carbonhydrogen.Measurestoincreasedemandarereceivinglessattention.Japan,Korea,FranceandtheNetherlandshaveadoptedtargetsforFCEVdeployment.Butboostingtheroleoflow-carbonhydrogenincleanenergytransitionsrequiresastepchangeindemandcreation.Governmentsarestartingtoannounceawidevarietyofpolicyinstruments,includingcarbonprices,auctions,quotas,mandatesandrequirementsinpublicprocurement.Mostofthesemeasureshavenotyetenteredintoforce.Theirquickandwidespreadenactmentcouldunlockmoreprojectstoscaleuphydrogendemand.Hydrogenisakeypillarofdecarbonisationforindustry,althoughmostofthetechnologiesthatcancontributesignificantlyarestillnascent.Majorstepsarebeingtaken.Theworld’sfirstpilotprojectforproducingcarbon-freesteelusinglow-carbonhydrogenbeganoperationthisyearinSweden.InSpain,apilotprojectfortheuseofvariablerenewables-basedhydrogenforammoniaproductionwillPAGE|6ExecutivesummaryGlobalHydrogenReview2021Low-carbonhydrogencanbecomecompetitivewithinthenextdecadeMeetingclimatepledgesrequiresfasterandmoredecisiveactionAkeybarrierforlow-carbonhydrogenisthecostgapwithhydrogenfromunabatedfossilfuels.Atpresent,producinghydrogenfromfossilfuelsisthecheapestoptioninmostpartsoftheworld.Dependingonregionalgasprices,thelevelisedcostofhydrogenproductionfromnaturalgasrangesfromUSD0.5toUSD1.7perkilogramme(kg).UsingCCUStechnologiestoreducetheCO2emissionsfromhydrogenproductionincreasesthelevelisedcostofproductiontoaroundUSD1toUSD2perkg.UsingrenewableelectricitytoproducehydrogencostsUSD3toUSD8perkg.Whiletheadoptionofhydrogenasacleanfuelisaccelerating,itstillfallsshortofwhatisrequiredtohelpreachnetzeroemissionsby2050.Ifalltheannouncedindustrialplansarerealised,by2030:Totalhydrogendemandcouldgrowashighas105Mt–comparedwithmorethan200MtintheNZEScenario
Low-carbonhydrogenproductioncouldreachmorethan17Mt–one-eighthoftheproductionlevelrequiredintheNZEScenarioElectrolysiscapacitycouldriseto90GW–wellbelowthenearly850GWintheNZEScenarioThereissignificantscopeforcuttingproductioncoststhroughtechnologyinnovationandincreaseddeployment.ThepotentialisreflectedintheIEA’sNetZeroEmissionsby2050Scenario(NZEScenario)inwhichhydrogenfromrenewablesfallstoaslowasUSD1.3perkgby2030inregionswithexcellentrenewableresources(rangeUSD1.3-3.5perkg),comparablewiththecostofhydrogenfromnaturalgaswithCCUS.Inthelongerterm,hydrogencostsfromrenewableelectricityfallaslowasUSD1perkg(rangeUSD1.0-3.0perkg)intheNZEScenario,makinghydrogenfromsolarPVcost-competitivewithhydrogenfromnaturalgasevenwithoutCCUSinseveralregions.Upto6millionFCEVscouldbedeployed–40%ofthelevelofdeploymentintheNZEScenario(15millionFCEVs)Muchfasteradoptionoflow-carbonhydrogenisneededtoputtheworldontrackforasustainableenergysystemby2050.DevelopingaglobalhydrogenmarketcanhelpcountrieswithlimiteddomesticsupplypotentialwhileprovidingexportopportunitiesforcountrieswithlargerenewableorCO2storagepotential.Thereisalsoaneedtoacceleratetechnologyinnovationefforts.Severalcriticalhydrogentechnologiestodayareinearlystagesofdevelopment.WeestimatethatUSD90billionofpublicmoneyneedstobechanneledintocleanenergyinnovationworldwideasquicklyaspossible–witharoundhalfofitdedicatedtohydrogen-relatedtechnologies.PAGE|7ExecutivesummaryGlobalHydrogenReview2021Strongerinternationalco-operation:akeyleaverforsuccessInternationalco-operationiscriticaltoacceleratetheadoptionofhydrogen.JapanhasspearheadeddevelopmentsthroughtheHydrogenEnergyMinisterialMeetingsince2018.Severalbilateralandmultilateralco-operationagreementsandinitiativeshavesincebeenannounced,includingtheCleanEnergyMinisterialHydrogenInitiative,theHydrogenMissionofMissionInnovationandtheGlobalPartnershipforHydrogenoftheUnitedNationsIndustrialDevelopmentOrganization.ThesejointheexistingInternationalPartnershipforHydrogenandFuelCellsintheEconomyandtheIEAHydrogenandAdvancedFuelCellsTechnologyCollaborationProgramme.Strongercoordinationamongsuchinitiativesisimportanttoavoidduplicationofeffortsandensureefficientprogress.PAGE|8ExecutivesummaryGlobalHydrogenReview2021IEApolicyrecommendationsMobiliseinvestmentinproduction,infrastructureandfactories:Apolicyframeworkthatstimulatesdemandcan,inturn,promptinvestmentinlow-carbonproductionplants,infrastructureandmanufacturingcapacity.However,withoutstrongerpolicyaction,thisprocesswillnothappenatthenecessarypacetomeetclimategoals.Providingtailor-madesupporttoselectedshovel-readyflagshipprojectscankick-startthescalingupoflow-carbonhydrogenandthedevelopmentofinfrastructuretoconnectsupplysourcestodemandcentresandmanufacturingcapacitiesfromwhichlaterprojectscanbenefit.Adequateinfrastructureplanningiscriticaltoavoiddelaysorthecreationofassetsthatcanbecomestrandedinthenearormediumterm.
Governmentsmusttakealeadintheenergytransformation.InTheFutureofHydrogen,theIEAidentifiedaseriesofrecommendationsfornear-termaction.Thisreportoffersmoredetailabouthowpoliciescanacceleratetheadoptionofhydrogenasacleanfuel:Developstrategiesandroadmapsontheroleofhydrogeninenergysystems:Nationalhydrogenstrategiesandroadmapswithconcretetargetsfordeployinglow-carbonproductionand,particularly,stimulatingsignificantdemandarecriticaltobuildstakeholderconfidenceaboutthepotentialmarketforlow-carbonhydrogen.Thisisavitalfirststeptocreatemomentumandtriggermoreinvestmentstoscaleupandacceleratedeployment.
Providestronginnovationsupporttoensurecriticaltechnologiesreachcommercialisationsoon:Continuousinnovationisessentialtodrivedowncostsandincreasethecompetitivenessofhydrogentechnologies.Unlockingthefullpotentialdemandforhydrogenwillrequirestrongdemonstrationeffortsoverthenextdecade.AnincreaseofR&Dbudgetsandsupportfordemonstrationprojectsisurgentlyneededtomakesurekeyhydrogentechnologiesreachcommercialisationassoonaspossible.
Createincentivesforusinglow-carbonhydrogentodisplaceunabatedfossilfuels:Demandcreationislaggingbehindwhatisneededtohelpputtheworldontracktoreachnet-zeroemissionsby2030.Itiscriticaltoincreaseconcretemeasuresonthisfronttotapintohydrogen’sfullpotentialasacleanenergyvector.Currently,low-carbonhydrogenismorecostlytousethanunabatedfossil-basedhydrogeninareaswherehydrogenisalreadybeingemployed–anditismorecostlytousethanfossilfuelsinareaswherehydrogencouldeventuallyreplacethem.Somecountriesarealreadyusingcarbonpricingtoclosethiscostgapbutthisisnotenough.Wideradoptioncombinedwithotherpolicyinstrumentslikeauctions,mandates,quotasandhydrogenrequirementsinpublicprocurementcanhelpde-riskinvestmentsandimprovetheeconomicfeasibilityoflow-carbonhydrogen.
Establishappropriatecertification,standardisationandregulationregimes:Theadoptionofhydrogenwillspawnnewvaluechains.Thiswillrequiremodifyingcurrentregulatoryframeworksanddefiningnewstandardsandcertificationschemestoremovebarrierspreventingwidespreadadoption.Internationalagreementonmethodologytocalculatethecarbonfootprintofhydrogenproductionisparticularlyimportanttoensurethathydrogenproductionistrulylow-carbon.Itwillalsoplayafundamentalroleindevelopingaglobalhydrogenmarket.
PAGE|9IntroductionGlobalHydrogenReview2021IntroductionPAGE|10IntroductionGlobalHydrogenReview2021OverviewIntherun-uptothe26thConferenceofthePartiestotheUNFrameworkConventiononClimateChange(COP26),agrowingnumberofcountriesareannouncingtargetstoachievenetzeroGHGemissionsoverthenextdecades.Inturn,morethan100companiesthatconsumelargevolumesofenergyorproduceenergy‐consuminggoodshavefollowedsuit.AsdemonstratedintheIEANet
zeroby2050
roadmap,achievingthesetargetswillrequireimmediateactiontoturnthe2020sintoadecadeofmassivecleanenergyexpansion.deployment,andduringthe6thMissionInnovationMinisterial,theCleanHydrogenMissiontoreducethecostofcleanhydrogenwasannounced.ThisGlobalHydrogenReviewisanoutputofH2IthatisintendedtoinformenergysectorstakeholdersonthecurrentstatusandfutureprospectsofhydrogenandserveasaninputtothediscussionsattheHEMofJapan.ItcomprehensivelyexamineswhatisneededtoaddressclimatechangeandcomparesactualprogresswithstatedgovernmentandindustryambitionsandwithkeyactionsannouncedintheGlobalActionAgendalaunchedintheHEM2019.Focusingonhydrogen’susefulnessinmeetingclimategoals,thisReviewaimstohelpdecisionmakersfine-tunestrategiestoattractinvestmentandfacilitatedeploymentofhydrogentechnologieswhilealsocreatingdemandforhydrogenandhydrogen-basedfuels.Hydrogenwillneedtoplayanimportantroleinthetransitiontonetzeroemissions.SincethefirstHydrogenEnergyMinisterial(HEM)meetinginJapanin2018,momentumhasgrownandanincreasingnumberofgovernmentsandcompaniesareestablishingvisionsandplansforhydrogen.AttheOsakaSummitin2019,G20leadersemphasisedhydrogen’sroleinenablingthecleanenergytransition.TheIEApreparedthelandmarkreportTheFutureofHydrogen
forthesummit,withdetailedanalysisofthestateofhydrogentechnologiesandtheirpotentialtocontributetoenergysystemtransformation,aswellaschallengesthatneedtobeovercome.Inaddition,duringthe10thCleanEnergyMinisterial(CEM)meetinginVancouver,theHydrogenInitiative(H2I)
waslaunchedtoacceleratehydrogenThisReview’sanalysiscomprisessevenchapters.First,thechapteronpolicytrendsdescribesprogressmadebygovernmentsinadoptinghydrogen-relatedpolicies.Next,twocomprehensivechaptersonglobalhydrogendemandandsupplyprovidein-depthanalysesofrecentadvancesindifferentsectorsandtechnologiesandexplorehowtrendscouldevolveinthemediumandlongterm.PAGE|11IntroductionGlobalHydrogenReview2021Achapteroninfrastructureandhydrogentradeemphasisestheneedtodevelopboththeseareaswhilerampingupdemandandsupply.Italsodetailsthestatusandopportunitiesfordeployinghydrogeninfrastructure,aswellasrecenttrendsandtheoutlookforhydrogentrade.Investmentsandinnovationarecombinedintoonechaptertoreflecthowtheymutuallyunderpintrendsinthedevelopmentanduptakeofhydrogentechnologies.Meanwhile,thechapteroninsightsonselectedregionsrecapsprogressinregionsandcountrieswheregovernmentsandindustryareparticularlyactiveinadvancinghydrogendeployment.Thefinalchapterprovidespolicyrecommendationstoacceleratetheadoptionofhydrogentechnologiesinthenextdecade,withaviewtoensuringitbecomeseconomicallyandtechnicallyviableandsociallyacceptable.PAGE|12IntroductionGlobalHydrogenReview2021TheHydrogenInitiativeDevelopedundertheCEMframework,H2Iisavoluntarymulti-governmentinitiativethataimstoadvancepolicies,programmesandprojectsthatacceleratethecommercialisationanddeploymentofhydrogenandfuelcelltechnologiesacrossallareasoftheeconomy.Ultimately,itseekstoensurehydrogen’splaceasakeyenablerintheglobalcleanenergytransition.TheIEAservesastheH2Ico-ordinatortosupportmembergovernmentsastheydevelopactivitiesalignedwiththeinitiative.H2Icurrentlycomprisesthefollowingparticipatinggovernmentsandintergovernmentalentities:Australia,Austria,Brazil,Canada,Chile,thePeople’sRepublicofChina(hereafterChina),CostaRica,theEuropeanCommission,Finland,Germany,India,Italy,Japan,theNetherlands,NewZealand,Norway,Portugal,theRepublicofKorea(hereafterKorea),theRussianFederation(hereafterRussia),SaudiArabia,SouthAfrica,theUnitedKingdomandtheUnitedStates.Canada,theEuropeanCommission,Japan,theNetherlandsandtheUnitedStatesco-leadtheinitiative,whileChinaandItalyareobservers.H2Iisalsoaplatformtoco-ordinateandfacilitateco-operationamonggovernments,otherinternationalinitiativesandtheindustrysector.TheInitiativehasactivepartnershipswiththeHydrogenCouncil,theInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE),theInternationalRenewableEnergyAgency(IRENA),MissionInnovation(MI),theWorldEconomicForum(WEF)andtheIEA’sAdvancedFuelCellsandHydrogenTechnologyCollaborationProgrammes(TCPs),allofwhicharepartoftheH2IAdvisoryGroup.Inaddition,severalindustrialpartnersactivelyparticipateintheH2IAdvisoryGroup’sbi-annualmeetings,includingBallard,Enel,Engie,NelHydrogen,thePortofRotterdamandThyssenkrupp.PAGE|13IntroductionGlobalHydrogenReview2021TheGlobalHydrogenReviewFollowingIEArecommendationsinTheFutureofHydrogen,thisGlobalHydrogenReviewaimstotrackprogressinhydrogenproductionanddemand,aswellasinotherareasofcriticalimportancesuchaspolicy,regulationandinfrastructuredevelopment.Todothiseffectivelyandcomprehensively,theIEAhasestablishedco-operativerelationshipswithotherrelevantinstitutionstoprovidesoundanalysisbasedonthebestpossibledata,andtocreatesynergiesamongotherinternationalefforts,buildingontheirrespectivestrengthsandexperiences.specifichydrogentechnologiesandofferedinsightsonemergingtechnologiesandbarriersthatneedtobeovercometofacilitatetheirdeployment.TheAdvancedFuelCellsTCP
contributedwithitsannualtrackingoffuelcellelectricvehiclesandinfrastructuredeployment.TypesofhydrogenintheGlobalHydrogenReviewHydrogenisaveryversatilefuelthatcanbeproducedusingalltypesofenergysources(coal,oil,naturalgas,biomass,renewablesandnuclear)throughaverywidevarietyoftechnologies(reforming,gasification,electrolysis,pyrolysis,watersplittingandmanyothers).Inrecentyears,colourshavebeenusedtorefertodifferenthydrogenproductionroutes(e.g.greenforhydrogenfromrenewablesandblueforproductionfromnaturalgaswithcarboncapture,utilisationandstorage[CCUS]),andspecialisedtermscurrentlyunderdiscussioninclude“safe”,“sustainable”,“l(fā)ow-carbon”and“clean”.Thereisnointernationalagreementontheuseofthesetermsasyet,norhavetheirmeaningsinthiscontextbeenclearlydefined.TheHydrogenCouncil
inparticularsharedcriticalinformationontechnologycostsandperformancefromitsindustrynetwork,whichenrichedIEAdatabases,modellingassumptionsandtechno-economicparameters.Meanwhile,theIPHE
contributedinputsonthedevelopmentalstatusofstandards,codesandregulations.Leveragingitsgovernmentnetworkandestablishedprocesstocollectdataandworkcollaborativelyonregulatoryissues,italsoprovidedvaluableinformationonthetechnologydeploymentandpolicytargetsofitsmembergovernments.Becauseofthevariousenergysourcesthatcanbeused,theenvironmentalimpactsofeachproductionroutecanvaryconsiderably;plus,thegeographicregionandtheprocessconfigurationappliedalsoinfluenceimpacts.Forthesereasons,theTheIEATCPsandtheirnetworksofresearchersandstakeholdersalsoprovidedvaluableinputs.TheHydrogenTCP
helpedtheIEAupdateitslatestassessmentofthetechnologyreadinesslevelsofPAGE|14IntroductionGlobalHydrogenReview2021IEAdoesnotspecificallyespouseanyoftheaboveterms.RecognisingthatthepotentialofhydrogentoreduceCO2emissionsdependsstronglyonhowitisproduced,thisreporthighlightstherolelow-carbonhydrogenproductionroutescanhaveinthecleanenergytransition.Low-carbonhydrogeninthisreportincludeshydrogenproducedfromrenewableandnuclearelectricity,biomass,andfossilfuelswithCCUS.1ProductionfromfossilfuelswithCCUSisincludedonlyifupstreamemissionsaresufficientlylow,ifcapture–athighrates–isappliedtoallCO2streamsassociatedwiththeproductionroute,andifallCO2ispermanentlystoredtopreventitsreleaseintotheatmosphere.Thesameprincipleappliestolow-carbonfeedstocksandhydrogen-basedfuelsmadeusinglow-carbonhydrogenandasustainablecarbonsource(ofbiogenicoriginordirectlycapturedfromtheatmosphere).Thisreportalsohighlightstheimportanceofestablishingstandardsandcertificationtoproperlyrecognisethecarbonfootprintsofthedifferenthydrogenproductionroutes.Sincenostandardshavebeeninternationallyagreedandadopted,theIEAcontinuestodifferentiatethetypesofhydrogenbythetechnologyusedintheirproduction,andusesthisasthebasisofitscurrentdefinitionoflow-carbonhydrogen.Thismayevolveasdialoguewithintheinternationalhydrogencommunityadvancesandmoreevidenceandagreementemerge..1Inthisreport,CCUSincludesCO2capturedforuse(CCU)aswellasforstorage(CCS),includingCO2thatisbothusedandstored(e.g.forenhancedoilrecovery[EOR]orbuildingmaterials)ifsomeoralloftheCOispermanentlystored.WhenuseoftheCOultimatelyleadstoitbeingre-emittedtotheatmosphere(e.g.ureaproduction),CCUisspecified.22PAGE|15IntroductionGlobalHydrogenReview2021ScenariosusedinthisGlobalHydrogenReviewPAGE|16IntroductionGlobalHydrogenReview2021OutlookforhydrogenproductionanduseThisGlobalHydrogenReviewreliesonthreeindicatorstotrackprogressonhydrogenproductionanduse:Pledgespresentedinthisreportincludeofficialtargets(i.e.cleargoalsofnationalhydrogenstrategiesandroadmaps)aswellasambitions(i.e.planscommunicatedinconsultationsthroughtheH2Iworkstream,butforwhichgovernmentshavenotyetmadeofficialannouncementsoradoptedastrategyorroadmap).on-the-groundprogressinhydrogentechnologydeployment
governmentambitionstointegratehydrogenintolong-termenergystrategiesgapsbetweenon-the-groundprogress,governmentambitionsandprojectedenergytransitionrequirements.Forthefirsttime,theIEA’sMay2021reportNetzeroby2050
laysoutindetailwhatisneededfromtheenergysectortoreachnetzeroCO2emissionsby2050,inlinewiththeParisAgreement’sambitioustargettolimitglobaltemperatureriseto1.5°C.Basedonthesefindings,thisReviewcomparesactualimplementedactionswithcleanenergytransitionneedsusingtwoIEAscenarios:theNetzeroEmissionsby2050ScenarioandtheAnnouncedPledgesScenario.
Inthisreport,theProjectsCasereflectson-the-groundprogress.Ittakesallprojectsinthepipeline2intoaccountaswellasannouncedindustrystakeholderplanstodeployhydrogentechnologiesacrosstheentirevaluechain(fromproductiontouseindifferentend-usesectors).TheAnnouncedPledgesScenarioconsidersallnationalnetzeroemissionspledgesthatgovernmentshaveannouncedtodateandassumestheyarerealisedinfullandontime.Thisscenariotherebyshowshowfarfullimplementationofnationalnetzeroemissionspledgeswouldtaketheworldtowardsreachingclimategoals,andithighlightsthepotentialcontributionsofdifferenttechnologies,includinghydrogen.Governmenttargetsandambitionsrelatedtodeployinghydrogentechnologiesarepresentedashydrogenpledges.Togatherrelevantinformationfromgovernmentsaroundtheworld,ajointIEA–EuropeanCommissionworkstreamwasestablishedwithintheframeworkoftheCEMHydrogenInitiative,toconsultgovernmentsaround
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年貴州省存量房買賣合同
- 2025標(biāo)準(zhǔn)辦公樓租賃合同范本模板
- 2025商場(chǎng)物業(yè)管理合同示范文本
- 2025標(biāo)準(zhǔn)工業(yè)廠房租賃合同模板
- 2025茶葉店裝修設(shè)計(jì)合同協(xié)議書范本
- 2025營(yíng)養(yǎng)品代理合同書
- (三模)2025年5月濰坊市高三高考模擬考試語(yǔ)文試卷(含答案)
- 靜脈輸液避光護(hù)理安全操作規(guī)范
- 護(hù)理基礎(chǔ)護(hù)理知識(shí)
- 斷指康復(fù)護(hù)理
- 《元代染織工藝》課件
- 2025年華東師大版八年級(jí)物理下冊(cè)階段測(cè)試試卷
- 《熱愛(ài)生命》課件-初中教育-教育專區(qū)
- 微信公眾號(hào)運(yùn)營(yíng)協(xié)議
- 2024年銀行業(yè)全渠道客戶旅程分析與精細(xì)化線上運(yùn)營(yíng)白皮書-火山引擎
- 江蘇省鹽城市阜寧縣多校2024-2025學(xué)年九年級(jí)上學(xué)期12月月考語(yǔ)文試題含答案
- 基于Arduino的智能鬧鐘設(shè)計(jì)與制作
- DB36T 477-2019 商品肉鵝規(guī)模養(yǎng)殖生產(chǎn)技術(shù)規(guī)程
- 印章交接表(可編輯)
- 火災(zāi)事故應(yīng)急演練桌面推演
- 圖書館藏書出入庫(kù)管理制度
評(píng)論
0/150
提交評(píng)論