浙江省寧波市東方中學(xué)2023屆教研聯(lián)合體中考模擬(三)數(shù)學(xué)試題含解析_第1頁
浙江省寧波市東方中學(xué)2023屆教研聯(lián)合體中考模擬(三)數(shù)學(xué)試題含解析_第2頁
浙江省寧波市東方中學(xué)2023屆教研聯(lián)合體中考模擬(三)數(shù)學(xué)試題含解析_第3頁
浙江省寧波市東方中學(xué)2023屆教研聯(lián)合體中考模擬(三)數(shù)學(xué)試題含解析_第4頁
浙江省寧波市東方中學(xué)2023屆教研聯(lián)合體中考模擬(三)數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省寧波市東方中學(xué)2023屆教研聯(lián)合體中考模擬(三)數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為()A. B. C. D.2.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+13.如圖,正方形ABCD中,對角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.54.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨C.“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件D.“a是實(shí)數(shù),|a|≥0”是不可能事件5.某反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,△AOB的三個(gè)頂點(diǎn)都在格點(diǎn)上,現(xiàn)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,則點(diǎn)A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π7.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是()A.1 B.2 C.3 D.48.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.89.下面幾何的主視圖是()A. B. C. D.10.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:9二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,a)在直線y=2x+2與直線y=2x+4之間,則a的取值范圍是_____.12.如圖所示的網(wǎng)格是正方形網(wǎng)格,點(diǎn)P到射線OA的距離為m,點(diǎn)P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)13.某校組織“優(yōu)質(zhì)課大賽”活動,經(jīng)過評比有兩名男教師和兩名女教師獲得一等獎,學(xué)校將從這四名教師中隨機(jī)挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.14.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.15.若點(diǎn)(,1)與(﹣2,b)關(guān)于原點(diǎn)對稱,則=_______.16.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點(diǎn)O,點(diǎn)E在AC上,若OE=2,則CE的長為_______17.已知是一元二次方程的一個(gè)根,則方程的另一個(gè)根是________.三、解答題(共7小題,滿分69分)18.(10分)甲、乙兩名隊(duì)員的10次射擊訓(xùn)練,成績分別被制成下列兩個(gè)統(tǒng)計(jì)圖.并整理分析數(shù)據(jù)如下表:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?19.(5分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.20.(8分)如圖,方格紙中每個(gè)小正方形的邊長均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點(diǎn)C和點(diǎn)D均在小正方形的頂點(diǎn)上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上,連接CE,請直接寫出線段CE的長.21.(10分)在大課間活動中,體育老師隨機(jī)抽取了七年級甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:頻數(shù)分布表中a=,b=,并將統(tǒng)計(jì)圖補(bǔ)充完整;如果該校七年級共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?22.(10分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補(bǔ)全條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報(bào)道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計(jì)其中12﹣23歲的人數(shù)23.(12分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.24.(14分)某商場同時(shí)購進(jìn)甲、乙兩種商品共200件,其進(jìn)價(jià)和售價(jià)如表,商品名稱甲乙進(jìn)價(jià)(元/件)80100售價(jià)(元/件)160240設(shè)其中甲種商品購進(jìn)x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計(jì)劃最多投入18000元用于購買這兩種商品,則至少要購進(jìn)多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實(shí)際進(jìn)貨時(shí),生產(chǎn)廠家對甲種商品的出廠價(jià)下調(diào)a元(50<a<70)出售,且限定商場最多購進(jìn)120件,若商場保持同種商品的售價(jià)不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使該商場獲得最大利潤的進(jìn)貨方案.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.2、A【解析】

原式變形后,利用平方差公式計(jì)算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點(diǎn)睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.3、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項(xiàng);設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【點(diǎn)睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.4、C【解析】

直接利用概率的意義以及隨機(jī)事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯(cuò)誤;B、天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨,錯(cuò)誤;C、“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“a是實(shí)數(shù),|a|≥0”是必然事件,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了概率的意義以及隨機(jī)事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.5、A【解析】

設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別進(jìn)行判斷.【詳解】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(diǎn)(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.6、A【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答即可.【詳解】解:∵將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,∴∠AOC=90°,∵OC=3,∴點(diǎn)A經(jīng)過的路徑弧AC的長==,故選:A.【點(diǎn)睛】此題考查弧長計(jì)算,關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答.7、D【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點(diǎn)判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】①∵拋物線對稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負(fù)半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac>0,故③正確;④當(dāng)x=﹣1時(shí),y>0,∴a﹣b+c>0,故④正確.故選D.【點(diǎn)睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.8、B【解析】

根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計(jì)算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點(diǎn)睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關(guān)鍵9、B【解析】

主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.【點(diǎn)睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.10、A【解析】試題解析:過點(diǎn)D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點(diǎn)睛:角平分線上的點(diǎn)到角兩邊的距離相等.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

計(jì)算出當(dāng)P在直線上時(shí)a的值,再計(jì)算出當(dāng)P在直線上時(shí)a的值,即可得答案.【詳解】解:當(dāng)P在直線上時(shí),,當(dāng)P在直線上時(shí),,則.故答案為【點(diǎn)睛】此題主要考查了一次函數(shù)與一元一次不等式,關(guān)鍵是掌握函數(shù)圖象經(jīng)過的點(diǎn),必能使解析式左右相等.12、>【解析】

由圖像可知在射線OP上有一個(gè)特殊點(diǎn)Q,點(diǎn)Q到射線OA的距離QD=2,點(diǎn)Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數(shù)sin∠AOP>【詳解】由題意可知:找到特殊點(diǎn)Q,如圖所示:設(shè)點(diǎn)Q到射線OA的距離QD,點(diǎn)Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點(diǎn)睛】本題考查了點(diǎn)到線的距離,熟知在直角三角形中利用三角函數(shù)來解角和邊的關(guān)系是解題關(guān)鍵.13、【解析】

根據(jù)列表法求出所有可能及可得出挑選的兩位教師恰好是一男一女的結(jié)果數(shù)而利用概率公式計(jì)算可得.【詳解】解:所有可能的結(jié)果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同.挑選的兩位教師恰好是一男一女的結(jié)果有8種,所以其概率為挑選的兩位教師恰好是一男一女的概率為=,故答案為.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.14、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.15、.【解析】

∵點(diǎn)(a,1)與(﹣2,b)關(guān)于原點(diǎn)對稱,∴b=﹣1,a=2,∴==.故答案為.考點(diǎn):關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo).16、5或【解析】分析:由菱形的性質(zhì)證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點(diǎn)E在AC上,∴當(dāng)E在點(diǎn)O左邊時(shí)當(dāng)點(diǎn)E在點(diǎn)O右邊時(shí)∴或;故答案為或.點(diǎn)睛:考查菱形的性質(zhì),注意分類討論思想在數(shù)學(xué)中的應(yīng)用,不要漏解.17、【解析】

通過觀察原方程可知,常數(shù)項(xiàng)是一未知數(shù),而一次項(xiàng)系數(shù)為常數(shù),因此可用兩根之和公式進(jìn)行計(jì)算,將2-代入計(jì)算即可.【詳解】設(shè)方程的另一根為x1,又∵x=2-,由根與系數(shù)關(guān)系,得x1+2-=4,解得x1=2+.故答案為:【點(diǎn)睛】解決此類題目時(shí)要認(rèn)真審題,確定好各系數(shù)的數(shù)值與正負(fù),然后適當(dāng)選擇一個(gè)根與系數(shù)的關(guān)系式求解.三、解答題(共7小題,滿分69分)18、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】

(1)利用平均數(shù)的計(jì)算公式直接計(jì)算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計(jì)算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點(diǎn)進(jìn)行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊(duì)員參加比賽的話,可選擇乙參賽,因?yàn)橐耀@得高分的可能更大.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運(yùn)用.熟練掌握平均數(shù)的計(jì)算,理解方差的概念,能夠根據(jù)計(jì)算的數(shù)據(jù)進(jìn)行綜合分析.19、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.20、作圖見解析;CE=4.【解析】分析:利用數(shù)形結(jié)合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點(diǎn)睛:本題考查作圖-應(yīng)用與設(shè)計(jì)、等腰三角形的性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用思想結(jié)合的思想解決問題.21、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1)由統(tǒng)計(jì)圖易得a與b的值,繼而將統(tǒng)計(jì)圖補(bǔ)充完整;(2)利用用樣本估計(jì)總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學(xué)生的情況,再利用概率公式即可求得答案.詳解:(1)a=1-0.15-0.35-0.20=0.3;∵總?cè)藬?shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為:0.3,4;補(bǔ)全統(tǒng)計(jì)圖得:(2)估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學(xué)生的有3種情況,∴所選兩人正好都是甲班學(xué)生的概率是:.點(diǎn)睛:此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計(jì)圖的知識.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補(bǔ)全條形統(tǒng)計(jì)圖;(3)先計(jì)算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計(jì)算這一組所對應(yīng)的圓心角的度數(shù);(4)先計(jì)算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).試題解析:解:(1)結(jié)合條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補(bǔ)全的條形統(tǒng)計(jì)圖如圖:(3)18-23歲這一組所對應(yīng)的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖.23、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點(diǎn),∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論